6. SDP Toolkit Specification

6.1 Introduction

In this section, we give a descriptive list of Toolkit software tools designed to satisfy the
requirements listed in PGS Toolkit Requirements Specification for the ECS Project, Hughes
Information Technology Systems, Inc. 193-801-SD4-001, October 1993 and updated in July
1995. The following fields are provided: a name, a synopsis field, a description of each tool, a
list of input and output, an error return field, examples, notes, and a cross reference to the target
Toolkit requirement(s).

It is assumed that ECS science software requests for system services, for system and resource
accesses, file 1/0 requests, error message transaction, metadata formatting, accesses to spacecraft
orbit and attitude, and time and date requests must be made through the Toolkit, as explained in
section 4.1. This usage will be tested at integration time at the DAACSs. These tools are described
in Section 6.2. Other services, such as geographic information data base requests, geolocation
tools, scientific and math library calls, requests for physical constants and unit conversions, will
be provided; their usage will be encouraged, but not enforced. They are the subject of Section
6.3.

Toolkit routines use the following naming convention:

PGS GROUPNAME_FUNCTIONALNAME. The GROUPNAME denotes the function of that
group of Toolkit routines: 10=Input/Output, SMF=Status/message Facility, MEM=Memory
Management, MET=metadata, EPH=Ephemeris/Attitude data access, TD=time and date
conversion, PC=ProcessControl, DEM=Digital Elevation Model access, AA=Ancillary Data
Access, CBP=Celestial Body Position, GCT=Geo-coordinate Transformation, CUC=Constant
and Unit Conversion, CSC=Coordinate System Conversion. The remaining part of the name has
sufficient detail to indicate the functionality of the tool. (See aso Section 3.2)

There are severa C (.h) and FORTRAN (.f) include files listed in the tool descriptions in the
following sections, e.g., PGS _10.h. These files are meant to contain descriptions of data
structures, constants; headers; configuration information for data files called by the tools;
common symbols; return codes, etc., used in that section. To view these files, look in Toolkit
directory $PGSHOME/include.

A note on error handling: Since each function has only one return value; every effort has been
made to preserve the most important warning or error value on returning. Given that subordinate
functions often have several possible returns, and different users have different priorities, it is
always advisable to check the message log in $PGSRUN as well as examining the return. When
totally inconsistent behavior is found in areturn from a subordinate function, the returned value
isPGS E TOOLKIT. Example: a Toolkit function passes an internally generated vector, whose
length is certain to be nonzero; to a subordinate function. The lower-level function then returns a
warning or error return saying that the vector is of zero length; while the higher level function

6-1 333-CD-004-002

returns PGS _E_TOOLKIT. Another example: if avalid spacecraft tag is passed in, but rejected
as invalid down the processing line, the error PGS_E_TOOLKIT is returned by the higher-level
function. Thus return value PGS_E_TOOLKIT indicates a flaw in the software, the violation of
an array boundary, a hardware, compiler, or system error, corrupted data, or some similarly
serious condition that invalidates the processing.

6.2 SDP Toolkit Tools-Mandatory

6.2.1 File l/O Tools

This section describes the set of tools used to perform file I/O, including Level 0 access generic
and temporary 1/0 tools, also proposed metadata tools. An explanation of usage of the Toolkit as
regards Hierarchical Data Format (HDF) is aso included.

6.2.1.1 Level O Science Data Access Tools

6.2.1.1.1 Introduction

These Level 0 access tools are used to open and read data from Level 0 datafiles. These files are
generated and formatted by EDOS for AM and PM platform data, and by the science data
processing facility (SDPF) for TRMM platform data. The Level O access tools also support
ADEOSII Level 0 datafiles.

The Level 0 access tool design has simple user interfaces, and allows science software to do
much of the data unpacking in whatever manner is desired. Essentially all header and packet data
are returned in character buffers. The packet data is returned a single packet at a time, so the
science software can decide whether to store it or to immediately processit.

This delivery of LO tools is preliminary in anticipation of receipt of definitive EDOS file
header formats. TRMM and EOS AM LO data formats have been implemented to the extent
possible; however, little is known about EOS PM and ADEOS-II LO file formats other than the
general form of the packet data-file header format is undefined at this writing. We await receipt
of LO file format definitions from ADEOS-1I and from EDOS for EOS PM. In addition no
attempt was made in the current version of the prototype to optimize speed of the LO
processing tools.

A complete specification of the Level O file formats used in construction of this software is found
in Appendix F.

6.2.1.1.2 Design Overview

The design focuses on the idea of a“virtual data set, consisting of all staged physical LO filesfor
a particular data type. By data type is meant data that are related in some way; most often this
means data with a common application process identifier (APID). There may be many virtual
data sets for a given production run. For example, main Clouds and Earth Radiant Energy
System (CERES) LO processing involves science data (APID 54) and housekeeping data (all
other APIDs). Each of these two sets of data corresponds to a single virtual data set in the

6-2 333-CD-004-002

Level 0 tool design. Each virtual data set corresponds to a single logical file ID in the science
software and (at the SCF) in the Process Control File (PCF).

For agiven run, if agiven set of datafor a single set of data (science or housekeeping) needs to
be broken into more than one file, then each physical file corresponds to a different version of
the same logical file ID in the PCF. (This is never expected to be the case for TRMM, but may
be for EOS AM or PM.)

Next is given a brief summary of the functions of the LO tools. The tools are divided into two
groups: one group consisting of required tools for reading LO data in production software, and
one group for use only at the SCF for generation of test data sets.

6.2.1.1.3 Tools for Reading Production LO Data

PGS I10_L0O Open sets up internal tables that allow the SDP Toolkit to provide the science
software with time-ordered access to file attributes. It opens the first physical file and positions
the file pointer at the earliest packet in the staged data. It returns the virtual file handle used by
other LO access tools.

PGS 10_LO SetStart isfor optionally positioning the virtual file pointer at a start time that is
different from the earliest packet in the staged data.

PGS 10 _LO SetStartCntPktsisfor optionally positioning the virtual file pointer at a start time
that is different from the earliest packet in the staged data. Also tracks the number of packets
skipped in the current file

PGS 10 _L0O GetHeader isfor retrieving data from the physical LO file header; in addition, for
TRMM processing, it retrieves data from the file footer, which consists of quality and missing
packet information. Data is returned in a simple character buffer.

PGS 10 _LO GetPacket retrieves a single packet’s worth of data. Data is also returned in a
simple character buffer by this function.

PGS I10_L0 Closeisfor closing aLO virtual data set.

6.2.1.1.4 Tools for Generating Simple Simulated LO Data Sets

The above tools satisfy SDP Toolkit requirements for tools that read Level 0 data files; along
with these, a means is provided to generate ssmple simulated Level O files. A major portion of
TRMM Level 0 processing may be simulated using these files; for EOS AM and PM platforms,
lack of file format definition has prevented more than the packet simulation included in the
simulator. EOS AM users can employ the TRMM header formats temporarily.

Provided for simulated file generation are:

L Osim, an executable interactive utility that queries the user about parameters used in creation of
asimulated Level O data set. It can create file(s) for a single APID, or a housekeeping file with
many APIDs; one or many physical files per APID; and many other things. See Appendix E for
an example of its use.

6-3 333-CD-004-002

PGS 10_LO File Sim, afunction callable from C or FORTRAN; it is the underlying function
used by LOsim. Users who prefer to customize file simulationsto fit their own needs may use this
function.

6.2.1.1.5 Use Of LO Read Tools In Science Software Processing

Next is presented a brief summary of how science software might use the LO read tools to do
Level O processing. A full example of LO processing using CERES as an example is given in
Appendix E. Examples are also provided in individual tool descriptions below.

In the production system, once the required LO data and other data are staged, the PGE kicks off
automatically. During development at the SCF, the devel oper must first generate file(s) using the
simulator tools, then prepare entries in the Process Control File (PCF).

The science code might proceed as follows:

a Cal PGS _10_LO_Open; with the logical file ID as input parameter used in the PCF. Get
back avirtual file handle for use in other tools.

b. Optionally call PGS _PC_GetFileAttr or PGS PC_GetFileByAttr to read an “attribute”
file associated with the LO data file. For example, for TRMM this might be the detached
standard formatted data unit (SFDU) header file.

c. Optionally call PGS PC_SetStart if a starting time other than the earliest in the data set
isdesired.

d. Allocate memory for as much data as is desired to save, based on the start and stop times
returned from PGS 10 L0 _Open. (In FORTRAN 77 this will have to be hardcoded to
some maximum.)

e. While there is still data left, first call PGS IO _LO GetHeader to read the physical file
header, and aso the footer (TRMM quality and accounting capsule (QAC) and missing
data unit list (MDUL) data).

f. Cal PGS 10 L0 GetPacket to read a single packet. Repeat until end of data reached,
storing the data as desired.

g. If PGS 10 L0 GetPacket returns a value indicating a new physical file has been opened,
loop back to call PGS IO _L0_GetHeader again to read the new file header.

h. Cal PGS IO_LO_Closeto close thisvirtual data set.

i. If there are more virtual data sets (e.g., APIDs) to process, loop back to call
PGS _10_Gen_Open again.

Note that this algorithm is just one example of how this might be done. Another way is to open
several virtual data sets at once.

Please note also that science software is responsible for unpacking headers, packets and footers
as it sees fit. Specification of their formats as used in this version of the software appears in
Appendix F.

6-4 333-CD-004-002

6.2.1.1.6 Open Issues

A major limitation in designing these tools was and is lack of ADEOS-II and EOS PM file
format definition, other than the packet format. We await this information from ADEOS-II and
EDOS respectively.

Most aspects of the TRMM file are handled by the read tools and the simulator. One item that is
not implemented in this prototype is the internal structure of the quality data and missing data
list. This means that if the user wants to simulate quality data or missing data, s’he will have to
construct it him/herself, then use the function PGS 10 L0 _File Sim to generate files. In
addition s/he will have to write code to make use of such data.

In this Toolkit delivery, no attempt has been made to optimize for speed. (This appliesto the tool
PGS 10_LO_GetPacket.)

Please note that this code as delivered is preliminary until definitive file header formatsare
received from ADEOS 11, EDOS and Pacor/DDF.

Feedback from the science teams concerning design and implementation of the prototype is
strongly encouraged.

6.2.1.1.7 Special Note on Processing TRMM and ADEOS-II Files

In order to processthe Level 0 datafilesthe Level 0 access tools must be able to convert the time
found in the data files to TAI. Special preparation is required to do this in the case of TRMM
and ADEOSHII.

To properly convert times to or from TRMM ¢g/c clock time the value of the TRMM Universal
Time Correlation Factor (UTCF) must be known. This value must be supplied by the user in the
Process Control File (PCF). The following line MUST be contained in the PCF for any process
that is converting to or from TRMM s/c clock time:

10123[TRMM UTCF valuel<UTCF VALUE>
Where the proper value of the UTCF should be substituted for <UTCF VALUE>.

To properly convert timesto or from ADEOS-I1 s/c clock time the ADEOS-11 Time Differential
(TMDF) values must be known. These values must be supplied by the user in the Process
Control File (PCF). The following lines MUST be contained in the PCF for any processthat is
converting to or from ADEOS-11 s/c clock time:

<UTC VALUE>

10120|JADEOS-1 s/c reference timel<S/C REFERENCE TIME>
10121|JADEOS-I1 ground reference time|l<GROUND REFERENCE TIME>
10122|ADEOS-1 s/c clock period|<S/C PERIOD>

Where:

the proper value of the S/C clock reference time should be substituted for
< S/C REFERENCE TIME>.

6-5 333-CD-004-002

the proper value of the ground reference time should be substituted for
<GROUND REFERENCE TIME> (thistime should be in TAI format-see sec. 6.2.7 Time and
Date Conversion Tools).

the proper value of the S/C clock period should be substituted for <S/C PERIOD>.

6-6 333-CD-004-002

Open a Virtual Data Set

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION

PGS 10_L0O Open

#include <PGS 10.h>

PGSt_SMF_status
PGS_|0_LO_Open(

PGSt PC Logical

PGSt_tag

PGSt_10_LO Virtua DataSet
PGSt_double

PGSt_double

INCLUDE ‘PGS _SMF.f’
INCLUDE ‘PGS PC.f’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f’
INCLUDE ‘PGS _IOf
INCLUDE ‘PGS IO_1.f

integer function
PGS_10_L0O _Open(

+ 4+ + + +

This tool opens the virtual data set pointed to by file logical. A virtual
Level O data set is defined by the set of physical data files that have been

file_logical,
Spacecraft_tag,
virtual_file,
start_time,
stop_time)

integer file_logica

integer spacecraft_tag
integer virtual_file

double precision start_time
double precision stop_time

staged for this Level 0 process.

The tool returns a descriptor that is used by all the Level 0 tools to access
the specified virtual data set. The tool also returns the start and stop times

of thisvirtual data set.

file_logical,
Spacecraft_tag,
*virtua_file,
*start_time,
*stop_time)

333-CD-004-002

INPUTS:

OUTPUTS:

RETURNS:

file_logical-Thelogical file descriptor for thisvirtual data set, asgiven in
the Process Control File

spacecraft_tag-The tag identifying which of the supported spacecraft
platforms generated this virtual data set. Must be either
PGSd_TRMM, PGSd_EOS AM, PGSd_EOS _PM or
PGSd_ADEOS II.

virtual_file-Thefile descriptor used by all other Level 0 access toolsto
refer to the virtual data set

start_time-The start time of this virtual data set
stop_time-The stop time of thisvirtual data set
Time format is TAI: continuous seconds since 12AM UTC Jan. 1, 1993

Table 6-1. PGS |0 _L0O Open Returns

Return Description

PGS_S_SUCCESS

Successful completion

PGSIO_ W L0 CORRUPT_FILE_HDR Corrupted file header

PGSIO_E L0 BAD_SPACECRAFT_TAG | Invalid spacecraft tag

PGSIO_E LO_INIT_FILE_TABLE Error during read of physical file header for initialization
PGSIO_E LO_INVALID_FILE_LOGICAL Failed to process this file logical in process control file
PGSIO_E L0 _MAP_VERSIONS Failed to initialize internal physical file table
PGSIO_E L0 _PHYSICAL_OPEN Unable to open physical file
PGSIO_E LO MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_LO_SEEK_1°" PACKET Can't find 1*' packet in dataset

EXAMPLES: Preparein part for Lightening Imaging Sensor (L1S) Level 0 processing by

opening the LISTRMM Level 0 virtual data set for science APID 61.

For TRMM, there is expected to be only one physical file per APID per
day. In this case each virtual data set (APID) corresponds to exactly one
physical file.

At the SCF, you must prepare entries of the following form in the Process
Control File:

? PRODUCT INPUT FILES
#[set env var PGS PRODUCT _INPUT for default location |
#
61]TRMM_G0091_1997-11-
01T00:00:00Z_dataset VV01_O1||[[TRMM_G0091 1997-11-
01T00:00:00Z_sfdu_V01_01|1

6-8 333-CD-004-002

(Herethelogical ID used isarbitrarily set to the APID.)

Note: In the above Process Control File entry, the file name in the next-to-last field isthe TRMM

FORTRAN:

SFDU header file, which is a file that contains data associated with the
given LO file. Use functions PGS I0_PC_GetFileAttr or
PGS _10_PC_GetFileByAttr to retrieve data from this file. Also, the PCF
entry must appear on a single line, and not be broken into several lines as
shown here.

#defi ne SCI ENCE_FI LE 61

PGSt 1O LO_Virtual Dat aSet virtual _file;
PGSt _PC Logi cal file_logical;
PGSt _tag spacecraft _tag;
PGSt _doubl e start _tine;
PGSt _doubl e stop_ti me;

PGSt _SMF_st at us returnStatus;

file_logical = SCl ENCE_FI LE;
spacecraft _tag = PGSd_TRWM

returnStatus = PGS |1 O LO_Open(
file_l ogical,
spacecraft _tag,
&irtual _file,
&start _tine,
&stop_tinme);

| # Virtual file handle virtual _file may now be used as
input to other LO access tools #/

inmplicit none

| NCLUDE ‘ PGS_SMF. f’

| NCLUDE ‘PGS_PC. f’

| NCLUDE ‘*PGS_PC 9. f’

| NCLUDE ‘PGS_TD. f’

| NCLUDE ‘PGS_IOf’

| NCLUDE ‘PGS_10 1. f°

i nt eger SCI ENCE_FI LE

par armet er (SClI ENCE_FI LE=61)

i nt eger pgs_io_| 0O_open
i nt eger file_logical

i nt eger spacecraft _tag
i nt eger virtual _file

doubl e precision start_tine

6-9 333-CD-004-002

NOTES:

doubl e precision stop_tine
i nt eger returnst at us

file logical = SCIENCE FILE
spacecraft_tag = PGSd_TRWM

returnstatus = pgs_i o_| 0_open(
file_logical,
spacecraft _tag,
virtual _file,
start _tine,
stop_timne)

Virtual file handle virtual _file may now be used as input to

other LO access tools

A virtual data set is defined by a set of one or more related Level O
physical files. For example, it might consist of all physical files
corresponding to a single TRMM science application ID (APID) for a
single production run. In the case of EDOS formatted Level O datafiles, a
virtual data set consists of all physical files comprising an EDOS
PDS/EDS. Only one PDS/EDS is allowed per virtua file.

The maximum number of virtual data sets that may be open at any one
timeis 20.

This function must be called first; before any other Toolkit Level 0 access
tools are called.

A virtual data set may consist of several physical files. In this case the
files are listed in the process control file with the same logical ID (1% field)
but different instance number (last field).

The physical file version corresponding to the first time-ordered set of
packets for the virtual data set is opened by this tool. The file pointer is
left positioned so that the next call to PGS 10 _L0_GetPacket will read the
first packet in thefile.

To get file header and footer (TRMM only) information for the newly
opened physical file, use tool PGS 10 L0 GetHeader. A rudimentary
check is done on the header of the first physical file of the virtual data set.
If an error is found in the header this function will return the value
PGSIO W _L0O CORRUPT_HEADER. The file will be opened anyway
and the user may use the function PGS_10_L0O_GetHeader() to retrieve the
header. That function will give a more detailed analysis of the problem.
Users should be aware, though, that if they proceed after getting the return
PGSIO_W_L0_CORRUPT_HEADER from this function they do so at
THEIR OWN RISK. This return value indicates that the file header is

6-10 333-CD-004-002

corrupt and the use of any further Toolkit functions to attempt to read the
file may produce unexpected results.

In the case of EDOS formatted Level 0 datafiles (PDS/EDS) the “header”
returned will actually be the Construction Record.

RELEASE NOTES:

This function conformsto EDOS-EGS ICD (June 28, 1996)
See Section 6.2.1.1.6 Open Issues

Note Regarding Use of the Process Control File:

If more than one physical file is associated with a given virtual data set,
the entries in the Process Control File that map the data set from
file_logical to the physical files must appear in reverse numerical order.
For example, in athree-file data set, file instance #3 is listed first and file
instance #1 is listed last. This mechanism will become transparent in the
production system.

REQUIREMENTS: PGSTK-0140, PGSTK-0190, PGSTK-0240

6-11 333-CD-004-002

Set Start Time

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION

INPUTS:

OUTPUTS:
RETURNS:

PGS 10 L0 SetStart

#include <PGS 10.h>

PGSt_SMF_status

PGS _|0_LO_SetStart(
PGSt_IO_LO Virtual DataSet virtua_file,
PGSt_double start_time)

INCLUDE ‘PGS _SMF.f’
INCLUDE ‘PGS PC.f’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f’
INCLUDE ‘PGS _IOf
INCLUDE ‘PGS IO_1.f

integer function PGS _|O_LO0_SetStart(virtual_file, start_time)
integer virtual_file
double precision start_time

Sets the virtual file pointer so that the next call to the tool
PGS _10_L0O_GetPacket will read the first available packet at or after the
specified time.

virtual_file-The file descriptor for thisvirtual data set, returned by the
call to PGS 10 L0 Open

start_time-The start time of the desired packet. Format is TAI:
continuous seconds since 12AM UTC Jan. 1, 1993.

NONE

Table 6-2. PGS IO _LO_SetStart Returns

Return Description

PGS_S_SUCCESS

Successful completion

PGSIO_E_LO_VIRTUAL_DS_NOT_OPEN | Virtual data set is not open

PGSIO_W_LO_TIME_NOT_FOUND Requested start time not found; file pointer position was unchanged
PGSIO W _LO PHYSICAL_CLOSE Failed to close physical file

PGSIO_E_LO_MANAGE_TABLE Error accessing internal virtual file table
PGSIO_E_LO_PHYSICAL_OPEN Unable to open physical file

PGSIO_E L0 SEEK PACKET Unable to find requested packet
PGSIO_M_LO_HEADER_CHANGED New physical file open-file header has changed

6-12 333-CD-004-002

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS I0_LO Open.

C: PGSt _1 O LO_Virtual Dat aSet virtual file;
PGSt _doubl e start _tine;
PGSt _doubl e new start _time;
PGSt _SMF_st at us returnStatus;

new start _time = start_time + 1200.0;

returnStatus = PGS IO LO SetStart(virtual file,
new start _tinme);
if (returnStatus != PGS_S SUCCESS)

{
got o EXCEPTIQON, /# GO TO EXCEPTI ON HANDLI NG #/
}
FORTRAN: inplicit none
| NCLUDE ‘ PGS_SMF. f’
| NCLUDE ‘PGS_PC. '
| NCLUDE “PGS_PC 9. f’
| NCLUDE ‘PGS_TD. f’
| NCLUDE ‘PGS_IOf’
| NCLUDE ‘PGS 1O 1.’
i nt eger pgs_io | 0 _setstart
i nt eger virtual _file

doubl e precision start_tine
doubl e precision new start_tine
i nt eger returnstatus

new start _time = start_time + 1200.0

returnstatus = pgs_io |0 setstart(virtual file,
new start _time)

if (returnStatus .ne. PGS S SUCCESS) goto EXCEPTI ON
NOTES: Normal returnisPGS_ S SUCCESS.

A virtual data set must have been opened by PGS IO L0 Open before
this function is called.

RELEASE NOTES:
See Section 6.2.1.1.6 Open Issues
REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

6-13 333-CD-004-002

Set Start Time and Count Packets

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION

INPUTS:

OUTPUTS:

PGS IO L0 SetStartCntPkts

#include <PGS 10.h>

PGSt_SMF_status
PGS _|0_LO_SetStart(

PGSt_10_LO VirtuaDataSet virtual_file,
PGSt_double start_time
PGSt_integer* totpacket _skip)

INCLUDE ‘PGS SMF.f
INCLUDE ‘PGS PCf’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f
INCLUDE ‘PGS _|O.f
INCLUDE ‘PGS |0 _1f

integer function PGS 10 _LO_SetStart(virtual_file, start_time,totpacket skip)

integer virtual_file
double precision start_time
integer totpacket_skip

Sets the virtual file pointer so that the next call to the tool
PGS 10 _L0O_GetPacket will read the first available packet at or after the
specified time. Also tracks the number of packets skipped in the current
file.

virtual_file-The file descriptor for this virtual data set, returned by the
call to PGS 10 L0 Open

start_time-The start time of the desired packet. Format is TAI:
continuous seconds since 12AM UTC Jan. 1, 1993.

totpacket_skip - The total number of packets skipped before the desired packet
selected at the specified time

6-14 333-CD-004-002

RETURNS:
Table 6-3.

PGS 10_LO _SetStart Returns

Return

Description

PGS_S_SUCCESS

Successful completion

PGSIO_E_LO_VIRTUAL_DS_NOT_OPEN

Virtual data set is not open

PGSIO_W_LO_TIME_NOT_FOUND

Requested start time not found; file pointer position was unchanged

PGSIO_W_LO0_PHYSICAL_CLOSE

Failed to close physical file

PGSIO_E_LO_MANAGE_TABLE

Error accessing internal virtual file table

PGSIO_E_LO_PHYSICAL_OPEN

Unable to open physical file

PGSIO_E_LO_SEEK_PACKET

Unable to find requested packet

PGSIO_M_LO_HEADER_CHANGED

New physical file open-file header has changed

EXAMPLES: Set the time to start processing at 20 minutes after the data set start time.
Examples assume the data set start time has previously been returned from
PGS 10_LO Open.

C. PGSt |1 O LO_Virtual Dat aSet virtual _file;
PGSt _doubl e start _tine;
PGSt _doubl e new start _tine;
PGSt _SMF_st at us returnSt at us;
PGSt _i nt eger t ot al packet _ski p;

new start ti

returnStatus

new_ st

me = start_tine + 1200.0;

= PGS IO LO SetStart(virtual file,
art_time, &total packet_skip);

if (returnStatus != PGS_S_SUCCESS)
{
goto EXCEPTIQN; /# GO TO EXCEPTI ON HANDLI NG #/
}
FORTRAN: inmplicit none
| NCLUDE ‘ PGS_SMF. f’
| NCLUDE ‘PGS_PC. f’
| NCLUDE ‘PGS_PC 9. f’
| NCLUDE ‘PGS_TD. f’
| NCLUDE ‘PGS_IOf’
| NCLUDE ‘PGS 10O 1.1’
i nt eger pgs_io | 0 _setstart
i nt eger virtual _file
i nt eger t ot al packet _skip

doubl e precision start_tinme
doubl e precision new start_tine

i nt eger

returnstatus

6-15 333-CD-004-002

new start _tinme = start_tinme + 1200.0

returnstatus = pgs_io |0 _setstart(virtual _file,
new start _tine,total packet skip)
if (returnStatus .ne. PGS _S SUCCESS) goto EXCEPTI ON

NOTES: Normal returnisPGS S SUCCESS.

A virtual data set must have been opened by PGS 10 L0 Open before
thisfunction is called.

RELEASE NOTES:
See Section 6.2.1.1.6 Open Issues
REQUIREMENTS: PGSTK-0140, PGSTK-0200, PGSTK-0220, PGSTK-0240

6-16 333-CD-004-002

Get Header Data

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

PGS 10 _LO GetHeader

#include <PGS 10.h>

PGSt SMF_status
PGS 10 L0 GetHeader(
PGSt 10 L0 Virtual DataSet virtua_file,

PGSt_integer header buffer_size,
PGSt 10_LO Header *header_buffer,
PGSt_integer footer buffer_size,
PGSt 10 _LO Footer *footer_buffer)

INCLUDE ‘PGS _SMF.f’
INCLUDE ‘PGS PC.f’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f’
INCLUDE ‘PGS _IOf
INCLUDE ‘PGS IO_1.f

integer function PGS _|O_LO_GetHeader(virtual_file, header buffer_size,

header_buffer,
footer buffer_size,
footer_buffer)

integer virtual_file

integer header_buffer_size

character*(*) header_buffer

integer footer_buffer_size

character* (*) footer buffer

This tool reads header and footer information for the currently open
physical file into the user-supplied buffers. It is intended to be called
whenever the file header and footer data change, though it may be called
at any time. In the case EDOS formatted files this tool will return the
entire contents of the PDS/EDS Construction Record.

The file header and footer data will change whenever a call to one of the
tools causes a new physical file to be opened. This will always occur upon
a cal to PGS IO _L0O Open, and may also occur upon calls to
PGS 10 _LO SetStart and PGS 10 L0 GetPacket. These latter two
signal this event via a return status code of
PGSIO M _LO HEADER CHANGED. In the case of EDOS files, which

6-17 333-CD-004-002

INPUTS:

OUTPUTS:

RETURNS:

have no headers, no notice will be given when a new physical file is
opened. Typical use of thistool isin aloop of calsto read data packets.

virtual_file-The file descriptor for this virtual data set, returned by the
call to PGS 10 L0 Open

header_buffer_size-Sizein bytes of user-supplied header buffer

footer_buffer_size-Size in bytes of user-supplied footer data buffer. If O,
do not read footer data (TRMM only)

header_buffer-User-supplied buffer containing the header, read in from
the current physical file

footer_buffer-User-supplied buffer containing the footer data, read in from
the current physical file (TRMM only)

Table 6-4. PGS IO _LO GetHeader Returns

Return Description

PGS_S_SUCCESS

Successful completion

PGSIO_E LO BAD BUF _SIz Buffer size must be a positive integer

PGSIO_E_LO_VIRTUAL_DS NOT_OPEN [Virtual data set is not open

PGSIO_E_LO_FSEEK

Failed to locate requested byte in file

PGSIO W _LO HDR_TIME_ORDER Time of last packet is earlier than first packet in file header

PGSIO_E LO BAD VAR _HDR_SIZE Size of the variable header is invalid

PGSIO W_L0O BAD PKT_DATA SIZE Total size of packet data is invalid

PGSIO_W_L0 BAD PACKET_COUNT Total number of packets is invalid

PGSIO W _LO BAD FOOTER_SIZE Size of the file footer is invalid

PGSIO_W_L0 ZERO_PACKET_COUNT | Total number of packets is zero

PGSIO W _LO HDR_BUF _TRUNCATE Insufficient header buffer size - data

PGSIO_W_LO FTR_BUF _TRUNCATE Insufficient footer buffer size - data

PGSIO W _LO _ALL BUF_TRUNCATE Insufficient header buffer AND footer buffer sizes - data
truncated

PGSIO_E LO UNEXPECTED_EOF Encountered unexpected end-of-file

PGS_E_UNIX UNIX error (check log file for type of error)

PGSIO_E LO BAD _SPACECRAFT_TAG | Invalid spacecraft tag

EXAMPLES:

The example shows how to use this function in conjunction with
PGS 10 _L0O GetPacket to read Level 0 data from asingle virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All datain the virtual data set are read.

For clarity, error handling is omitted from the examples.

6-18 333-CD-004-002

#def i ne HEADER BUFFER_MAX 556 /# max # header bytes #/
#defi ne FOOTER _BUFFER_MAX 100000 /# nax # footer bytes #/
#def i ne PACKET _BUFFER MAX 7132 /# nax # packet bytes #/

PGSt _10 LO_Virtual DataSet virtual file;

PGSt _| O LO_Header header _buf f er [HEADER_BUFFER_MAX] ;
PGSt _1 O LO_Foot er f oot er _buffer[FOOTER BUFFER_MAX] ;
PGSt 1 O LO_Packet packet buf [PACKET BUFFER NAX] ;

PGSt _integer file_ | oop_flag;
PGSt i nteger packet | oop_flag;

file_loop_flag = 1;
while(file loop flag)
{
returnStatus = PGS | O LO_Get Header(virtual file,
HEADER BUFFER _MAX, header buffer,
FOOTER BUFFER_MAX, footer_buffer);

| # Unpack and/or save or process header and footer data
here #/

packet |oop flag = 1;
whi | e(packet _| oop_flag)
{
returnStatus = PGS | O LO_Get Packet (
virtual _file, PACKET BUFFER NAX,
packet buf);

switch (returnStatus)

{
case PGSI O M LO_HEADER_ CHANGED:
/# end of this physical file #/
packet | oop_flag = O;
br eak;
case PGSI O WLO_END OF VI RTUAL_DS:
/# end of this virtual data set #/
file_loop_flag = O;
packet | oop_flag = O;
br eak;
}

| # Unpack and/or save or process packet data here #/
} [# End while (packet_Loop_flag) #/

} /# End while (file_Loop_flag) #/

6-19 333-CD-004-002

FORTRAN: inmplicit none

| NCLUDE ‘ PGS_SMF. f’

| NCLUDE ‘PGS_PC. f’

| NCLUDE ‘PGS _PC 9. f’

| NCLUDE ‘“PGS_TD. f’

| NCLUDE ‘PGS_I O f’

| NCLUDE ‘PGS 10 1.f’
charact er *556 header buffer

character*7132 packet _buffer
charact er*100000 footer_buffer

i nt eger pgs_i o_| 0_get header
i nt eger pgs_i o_| 0_get packet
i nt eger virtual _file

i nt eger file_loop_flag

i nt eger packet | oop_fl ag

i nt eger returnstatus

file_loop_flag = 1
do while(file loop flag)

returnstatus = pgs_io_| 0_getheader(virtual file,
556, header buffer
100000, footer_buffer)

C Unpack and/or save or process header and footer data here
packet |l oop flag = 1

do whil e(packet | oop _flag)

returnStatus = pgs_i o_| 0_get packet (

virtual _file, PACKET_BUFFER NMAX, packet buf)

if (returnstatus .eq. PGSIO M LO HEADER CHANGED) then

C end of this physical file

packet |l oop flag = 0
else if (returnstatus .eq.
PGSI O WLO_END OF VI RTUAL_DS) then
C end of this virtual data set

file_ loop flag = 0
packet |l oop flag = 0

end if

6-20 333-CD-004-002

C Unpack and/or save or process packet data here

end do

end do

NOTES:

Memory must be allocated to the output buffers before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

If the tool determines that the actual size of the file header or footer is
larger than the user-supplied buffer size, the header or footer data is
truncated to fit the user buffer. In this case, the return status will be
PGSIO W _L0O HDR_BUF TRUNCATE (if header buffer too small),
PGSIO W_LO FTR BUF TRUNCATE (if footer buffer too small), or
PGSIO_ W _LO ALL_BUF _TRUNCATE (if both buffers too small).

To retrieve the header and footer information from the first physical filein
a virtual data set, this tool must be called after first having opened the
virtual data set using the tool PGS 10 _L0O Open. To retrieve the header
and footer information from subsequent physical files within avirtual data
set, this tool should be called after the science software receives the return
status PGSIO M _LO HEADER_CHANGED from the tool
PGS I10_L0O_GetPacket.

A virtual data set must have been opened by PGS IO L0 Open before
this function is called. If the header of the currently open physical fileis
found to be corrupted, this function will return awarning to that effect:

PGSIO_ W _LO HDR_TIME_ORDER
PGSIO_E LO BAD VAR HDR SIZE
PGSIO_ W _LO BAD PKT _DATA_SIZE
PGSIO W_LO_BAD_PACKET_COUNT
PGSIO W_LO BAD FOOTER SIZE
PGSIO_ W _LO_ZERO PACKET _COUNT

The above returns indicate an error was found in the file header. The
header buffer will be returned, although it MAY be truncated. Similarly
the footer buffer (TRMM only) may be truncated or even missing if the
corrupt header file indicated that the start of the footer buffer was at an
offset (in the file) greater than the size of the physical file. The user is
cautioned to check the returned buffer(s) carefully in these cases. Further,
the user is cautioned that while the function PGS _10_L0_GetPacket() may
still be called, that function may produce unexpected results if the file
header is corrupt.

6-21 333-CD-004-002

RELEASE NOTES:

This function conforms to EDOS-EGS ICD (June 28, 1996)

See Section 6.2.1.1.6 Open Issues

REQUIREMENTS: PGSTK-0140, PGSTK-0210, PGSTK-0230, PGSTK-0240

6-22 333-CD-004-002

Get a Single Packet

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

PGS I10_L0O GetPacket

#include <PGS 10.h>

PGSt_SMF_status
PGS_|0_LO_GetPacket(

PGSt IO_LO VirtualDataSet virtual_file,
PGSt_integer packet buffer_size,
PGSt 10_LO Packet *packet_buffer)

INCLUDE ‘PGS SMF.f
INCLUDE ‘PGS PCf’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f
INCLUDE ‘PGS _|O.f
INCLUDE ‘PGS |0 _1f

integer function PGS 10 _L0_GetPacket(virtual_file, packet_buffer_size,
packet_buffer)
integer virtual_file
integer packet_buffer_size
character* (*) packet_buffer

Reads a single data packet from a Level 0 virtual data set into the user-
supplied buffer.

virtual_file-The file descriptor for this virtual data set returned by
PGS 10 _LO Open.

packet buffer size-Size in bytes of user-supplied packet buffer.

packet_buffer-User-supplied buffer containing the data packet read in
from the specified virtual data set.

6-23 333-CD-004-002

RETURNS:

Table 6-5. PGS 10 _LO_GetPacket Returns

Return

Description

PGS_S_SUCCESS

Successful completion

PGSIO_E_LO_MANAGE_TABLE

Error accessing internal virtual file table

PGSIO_E_LO_PHYSICAL_NOT_OPEN

No physical file currently open for this virtual data set

PGSIO_E_LO_PKT_BUF_OVERFLOW

Packet buffer too small; no data was read

PGSIO_E_LO_UNEXPECTED_EOF

Encountered unexpected end-of-file

PGSIO_W_LO_PKT_BUF_TRUNCATE

Insufficient buffer size-data truncated

PGSIO_W_LO_END_OF VIRTUAL_DS

Reached end of the current data set

PGSIO_M_LO_HEADER_CHANGED

New physical file open-file header has changed

PGSIO_E_LO_NEXT_PHYSICAL

Error opening next physical file in sequence

PGSIO_E_LO_SEEK_15" PACKET

Can't find first packet in dataset

PGSIO_W_LO_BUFTRUNC_END_DS

Insufficient packet buffer size-reached end of the current
data set

PGSIO_W_LO_BUFTRUNC_HDR_CHG

Insufficient packet buffer size-new physical file open-file
header has changed

PGSIO_E_LO_BUFTRUNC_NXTFILE

Insufficient buffer size-error opening next physical file in
sequence

PGS_E_UNIX

UNIX error (check StatusLog file)

EXAMPLES:

The example shows how to use this function in conjunction with

PGS 10 _L0O GetPacket to read Level 0 data from asingle virtual data set.
This algorithm works whether the virtual data set consists of only one, or
of several physical files. All datain the virtual data set are read.

For clarity, error handling is omitted from the examples.

C: #def i ne HEADER_BUFFER_MAX
#def i ne FOOTER_BUFFER_MAX 100000
#def i ne PACKET_BUFFER_MAX

PGSt _1 O LO_Virtual Dat aSet

PGSt _| O LO_Header
PGSt _| O LO_Foot er
PGSt 1 O LO_Packet

556 [/# max # header
/# max # footer

/# max # packet

byt es #/
bytes #/

7132 byt es #/

virtual _file;

header _buf f er [HEADER_BUFFER_MAX] ;
f oot er _buf f er[FOOTER_BUFFER_MAX] ;
packet buf [PACKET BUFFER NAX] ;

PGSt _integer file_ | oop_flag;

PGSt i nt eger

packet _| oop_f1 ag;

file_loop_flag = 1;
while(file loop flag)

{

returnStatus

= PGS_| O LO_Get Header (virtual file,

6-24 333-CD-004-002

HEADER BUFFER _MAX, header buffer,
FOOTER BUFFER_MAX, footer_buffer);

| # Unpack and/or save or process header and footer data
here #/

packet |oop flag = 1;
whi | e(packet _| oop_flag)
{
returnStatus = PGS | O LO_Get Packet (
virtual _file, PACKET_BUFFER_NAX,
packet buf);

switch (returnStatus)

{
case PGSI O M LO_HEADER_ CHANGED:
/# end of this physical file #/
packet | oop_flag = O;
br eak;
case PGSI O WLO_END OF VI RTUAL_DS:
/# end of this virtual data set #/
file_loop_flag = O;
packet | oop_flag = O;
br eak;
}

| # Unpack and/or save or process packet data here #/
} [# End while (packet_loop_flag) #/

} /# End while (file_loop_flag) #/

FORTRAN: implicit none
| NCLUDE ‘PGS_SMF. f’
| NCLUDE ‘PGS_PC. f’
| NCLUDE ‘PGS_PC 9. f’
| NCLUDE ‘PGS_TD. f’
| NCLUDE ‘PGS_IOf’
| NCLUDE ‘PGS IO 1.1’
char act er *556 header buffer

character*7132 packet buffer
character*100000 footer_buffer

i nt eger pgs_i o | 0 _get header
i nt eger pgs_i o_| 0_get packet
i nt eger virtual _file

i nt eger file_ loop_flag

6-25 333-CD-004-002

i nt eger packet | oop_fl ag
i nt eger returnst at us

file_ loop flag = 1
do while(file_loop_flag)

returnstatus = pgs_io |0 _getheader(virtual file,
556, header _buffer
100000, footer_buffer)

C Unpack and/or save or process header and footer data here

packet | oop_fl ag

do whil e(packet _

=1

| oop_flag)

returnStatus = pgs_i o_| 0_get packet (

virtual _file, PACKET BUFFER MAX, packet buf)

if (returnstatus

.eq. PGSI O M LO_HEADER CHANGED) t hen

C end of this physical file

packet | oop_fl ag

C end of this
file_loop_flag =
packet | oop_fl ag

end if

0

else if (returnstatus .eq.
PGSI O W LO_END OF_VI RTUAL_DS) then

virtual data set

1
o

C Unpack and/or save or process packet data here

end do

end do

NOTES:

Memory must be allocated to the output buffer before this tool is called.
Failure to do this may result in a core dump. (In FORTRAN 77, the buffer
CHARACTER array length must be hardcoded.)

Normal return is PGS S SUCCESS. If getting the next packet requires
that a new physical file be opened, the header and quality data will
change. In this case, the return status is set to
PGSIO_ M _LO HEADER_CHANGED. This allows the user to test the
return status and get updated header and quality data using the tool

6-26 333-CD-004-002

PGS 10 _L0O_GetHeader, in the case where there is more than one physical
file per virtual data set.

If the tool determines that the size of the packet is larger than the user
buffer size, as specified by the parameter packet_size, it will truncate the
packet to fit the user buffer. In this case, the return status will be
PGSIO_W_L0O BUFFER_TRUNCATE.

Packet formats for TRMM, EOS AM, and EOS PM are supported.

A virtual data set must have been opened by PGS 10 L0 Open before
thisfunction is called.

This function returns no data if the packet buffer size is less than 6 bytes
(the primary packet header size). It returns a warning and a truncated
buffer if the packet buffer size is more than 6 bytes but less than the actual
packet length.

RELEASE NOTES:
See Section 6.2.1.1.6 Open Issues
REQUIREMENTS: PGSTK-0140, PGSTK-0200, 0240

6-27 333-CD-004-002

Close a Virtual Data Set

NAME: PGS 10 LO Close
SYNOPSIS:
C #include <PGS 10.h>

PGSt SMF_status
PGS 10 L0 Clos(
PGSt |10 L0 Virtual DataSet virtua_file)

FORTRAN: INCLUDE ‘PGS SMF.f
INCLUDE ‘PGS PCf’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f
INCLUDE ‘PGS _|O.f
INCLUDE ‘PGS |0 _1f

integer function PGS 10 _LO_Close(virtua_file)
integer virtual_file

DESCRIPTION: This tool closes a virtual data set opened by a call to the tool
PGS I0_LO _Open.

INPUTS: virtual_file-The file descriptor for thisvirtual data set, returned by the
call to PGS _IO_LO_Open.
OUTPUTS: NONE
RETURNS:
Table 6-6. PGS IO _LO _Close Returns
Return Description
PGS S SUCCESS Successful completion
PGSIO_E LO_VIRTUAL DS _NOT_OPEN Virtual data set is not open
PGSIO_E LO MANAGE_TABLE Error accessing internal virtual file table
PGSIO_W_LO_PHYSICAL_CLOSE Failed to close physical file
EXAMPLES: Close a virtual data set opened with a call to PGS 10 _L0O Open. Go to

exception handling if there was an error.

C. PGSt _SMF_status returnStatus = PGS_S_SUCCESS,
PGSt _10 LO_Virtual DataSet virtual file;

returnStatus = PGS 1O LO _C ose(virtual _file);
if (returnStatus !'= PGS_S SUCCESS) goto EXCEPTI ON;

6-28 333-CD-004-002

FORTRAN: inmplicit none

| NCLUDE ‘ PGS_SMF. f’

| NCLUDE ‘PGS_PC. '

| NCLUDE ‘PGS_PC 9. f’

| NCLUDE ‘PGS_TD. f’

| NCLUDE ‘PGS_IOf’

| NCLUDE ‘PGS 1O 1.’

i nt eger pgs_io | 0 _close
i nt eger returnst at us

i nt eger virtual _file

returnstatus = pgs_io |0 _close(virtual _file)
if (returnstatus !'= PGS_S SUCCESS) goto 9999

NOTES: If aphysical fileis currently open, PGS IO _Gen_Closeis called to close
it. Otherwise this step is skipped. In either case, the return will be
PGS S SUCCESS.

REQUIREMENTS: PGSTK-0140, PGSTK-0190

6-29 333-CD-004-002

Create a Simulated Level 0 Data File

NAME:
SYNOPSIS:
C:

FORTRAN:

PGS 10 _LO File Sim

#include <PGS 10.h>
#include <PGS _|0_L0.h>

PGSt SMF_status
PGS I0_LO File Sim(

PGSt_tag

PGSt_integer

PGSt_integer

char

PGSt_integer

PGSt_double

PGSt_integer

PGSt_integer

char

void

PGSt_uinteger

void

void
INCLUDE ‘PGS SMF.f’
INCLUDE ‘PGS PC.f’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS TD.f’
INCLUDE ‘PGS I10.f
INCLUDE ‘PGS IO_1.f

SpacecraftTag,
app! D[],
firstPacketNum
startUTC[28],
numV alues,
timelnterval,
datal_ength[],
otherFlagg[2],
*filename,
*appData,
gualMissLen[2])
*qual Data)
*missData)

integer function pgs _io_10_write_pkt(spacecrafttag, appid,firstpacketnum,

integer

integer

integer
character* 27
integer

double precision
integer

6-30

startutc, numvalues,
timeinterval, datalength,
otherflags, filename,appdata,
gualmisslen, qualdata,
missdata)

Spacecrafttag

appid(*)

firstpacketnum

startutc

numvalues

timeinterval

datalength(*)

333-CD-004-002

DESCRIPTION:

INPUTS:

integer otherflags(2)

character* (*) filename

(any) appdata
integer gualmisslen(2)
(any) gualdata

(any) missdata

This tool creates file(s) containing simulated Level 0 data, each of which
has a file header, packet data, and a file footer. For TRMM, a detached
SFDU header fileis aso created for each Level O datafile.

spacecraftTag-The spacecraft identifier desired for the output data.

appl D-Array of application process identifiers (APIDs), one for each
packet to be generated

firstPacketNum-Va ue of Packet Sequence Count to use for theinitial
packet

startUTC-The UTC time of the first packet. Formats supported:

a) YYYY-MM-DDThh:mm:ss.dddddd
b) YYYY-DDDThh:mm:ss.dddddd

numV alues-The number of packets to generate
timelnterval-Time interval (in seconds) between packets

datal_ength-Array of lengths, in bytes, of the Application Data for each
packet. Does not include lengths of primary and secondary packet headers.

otherFlags-Array of length 2 with file header values
otherFlagg[0]: bit-packed “ Processing Options’ byte TRMM
values:
bit 3 on-Redundant Data Deleted
bit 6 on-Data Merging
bit 7 on-RS Decoding
bits 1,2,4,5,8-always of f

For example, to simulate Redundant Data Deleted and RS Decoding, turn
bits 3 and 7 on, which is decimal 68.

S0 set otherFlags[0]=68.
otherFlagg[1]: “Datatype Flags’ byte TRMM values.

otherFlagg[1]=1, Routine production data
otherFlagg[1]=2, Quicklook data

(NOTE: These two fields are simply written to the appropriate place in the
file header; no processing is done in this function based on their
values.)

filename-The name of the file to be created containing the LO packets.

6-31 333-CD-004-002

appData-Optional user-defined input of the packet application data field.
Does not include packet header data.

In C, if appData=NULL, a block of data of length equal to the largest
valuein array datal_ength isfilled with zeroes, for each packet.

(The remaining inputs are for TRMM file footer processing only. They are
ignored for other platforms.)

gualMissLen-Array of length 2 with file footer section lengths
qualMissLen[0]: quality (QAC) buffer length if qualMissLen[0]=0,
no quality data are written to the file qualMissLen[1]: missing data
(MDUL) buffer length if qualMissLen[1]=0 or qualMissLen[0]=0,
no missing data are written to the file (QAC length and MDUL
length are always written to the file)

gualData-Quality and Accounting Capsule (QAC) dataIn C, if
gualData=NULL, ablock of data of length qualMissLen[0] isfilled
with zeroes and written to the file. (In FORTRAN you pass a zero-
filled array for this.)

missData-Missing Data Unit List (MDUL) dataIn C, if
missData=NULL, a block of data of length qualMissLen[1] is

filled with zeroes and written to the file. (In FORTRAN you pass a
zero-filled array for this.)

OUTPUTS: NONE
RETURNS:
Table 6-7. PGS _I0_LO _File_Sim Returns
Return Description
PGS_S SUCCESS Successful completion
PGSIO_E_LO_BAD_NUM_PKTS lllegal number of packets
PGSIO_E_LO_BAD_APP_ID At least 1 packet had a bad Application ID
PGSIO_E_LO_BAD_FIRST_PKTNUM lllegal first packet number
PGSTD_E_SC_TAG_UNKNOWN spacecraft tag is unknown or not currently supported
PGSIO_E_LO BAD_DATA_LENGTH At least 1 packet had a bad data length
PGSIO_E_LO BAD_NUM_APP_IDS lllegal number of differing Application IDs
PGSTD_E_TIME_FMT_ERROR Error in ASCII time string format (generic format: YYYY-MM-DDThh:mm:ss.ddddddZ)
PGSTD_E_TIME_VALUE_ERROR Error in ASCII time string value (e.g., hours > 23)
PGS_E_TOOLKIT Unspecified Toolkit error (check StatusLog file)
PGS_E_UNIX UNIX error (check StatusLog file)
PGSMEM_E_MAXSIZE Maximum memory size reached: %d in bytes
PGSIO_E_LO_PHYSICAL_OPEN Unable to open physical file
PGSTD_E_DATE_OUT_OF_RANGE the input time is outside the range of allowable values for the spacecraft clock

EXAMPLES:

Generate a CERES LO science telemetry file named
TRMM_G0088_1997-12-01T00:00:00Z_V01.dataset 01, containing 3

6-32 333-CD-004-002

packets of different lengths, starting at midnight Dec. 1, 1997 and spaced
at 6.6 second intervals; also add QAC and MDUL data, filled with zeroes.

C: #define N 3

PGSt _tag spacecraft Tag = TRW

PGSt _i nteger appl DN = {54, 54, 54};

PGSt _i nteger firstPacket Num= 1;

char *start UTC = “1997- 12- 01T00: 00: 00" ;
PGSt _i nt eger nunVal ues = N,

PGSt _double tinelnterval = 6.6;

PGSt _i nteger datalLength[N;

PGSt _i nt eger ot her Fl ags[2] ;

char *fil ename
= “TRVMM (0088 _1997-12-01T00: 00: 00Z_VO01. dat aset _01";
char appDat a[9000] ;
PGSt _ui nt eger qual M ssLen[2] ={ 28, 16} ;
char *qual Dat a=NULL;
char *m ssDat a=NULL;

PGSt _SMF_status returnStatus;

ot her Fl ags[0]

68; /* Redundant Data Del eted & RS Decodi ng
*/
otherFlags[1] = 1; /* Routine production data */

/* Set lengths of packet application data */

dat aLengt h[0] = 2000;
dat aLengt h[1] = 3000;
dat aLengt h[2] = 4000;

/* Fill appData buffer as desired here.

Do not include packet header data—+t is filled by this
t ool .

Fill first 2000 bytes with first packet data,
next 3000 bytes with second packet data,

| ast 4000 bytes with third packet data */

[* Create sinulated file */

returnStatus =
PGS 10 LO_File_Sim
spacecr af t Tag,
appl b,
firstPacket Num
start UTC,

6-33 333-CD-004-002

numval ues,

ti melnterval,
dat aLengt h,
ot her Fl ags,

filename
appDat a,

qual M ssLen,

gual Dat a
nm ssDat a

)

FORTRAN: implicit none

C

C

Set

Fill

integer pgs_io |0 file_sim

i nt eger spacecraft Tag

i nteger appi d(3)

i nteger firstpacketnum
character*27 startutc

i nt eger nunval ues
doubl e precision timeinterval
i nt eger datal engt h(3)

i nteger otherflags(2)
character*256 fil enane
charact er*9000 appdat a
i nteger qual m ssl en(2)
character*28 qual data
character*16 mi ssdata

i nteger returnstatus

spacecraft Tag = TRW

appid(1) = 54
appid(2) = 54
appid(3) = 54

firstpacketnum= 1
startutc = *1994-12-31T12: 00: 00. 000000

nunval ues = 3
timeinterval =

.6

| engt hs of packet application data

dat al engt h(1)
dat al engt h(2)
dat al engt h(3)

2000
3000
4000

data to wite to file header
68 ! Redundant Data Del eted & RS Decodi ng

ot herfl ags(1)
ot herfl ags(2)

1 ! Routine production data

6-34

333-CD-004-002

Fill

C
Cc
C Fill
C
Cc
Cc

filenane = * TRVM G0088_1997-12-01T00: 00: 00Z_VO1. dat aset 01’
gual m sslen(1l) = 28
qgual m sslen(2) = 16

appDat a buffer as desired here.

Do not include packet header data—t is filled by this tool.
first 2000 bytes with first packet data,

next 3000 bytes with second packet data,

| ast 4000 bytes with third packet data

Create simulated file

returnstatus = pgs_io |0 file_sim

NOTES:

REQUIREMENTS:

spacecrafttag,
appi d,
firstpacket num
startutc,
nunval ues,

ti mei nterval,
dat al engt h,
fil enane,

ot herfl ags
appdat a,

gual m ssl en,
gual dat a,

n ssdat a)

This tool is intended for use in science software development and testing,
but not for production purposes.

When used to create file for EOS AM (EDOS format) the Construction
Record creation tool (PGS _10_L0O EDOS hdr_Sim()) must also be called
to create the PDS/EDS Construction Record.

RELEASE NOTES:
This function conforms to EDOS-EGS ICD (June 28, 1996)
See Section 6.2.1.1.6 Open Issues

Thereis no SDP Toolkit requirement for this functionality. This tool was
created to support internal ECS SDP Toolkit development and testing, and
it isbeing provided as a service to the user.

6-35 333-CD-004-002

6.2.1.2 HDF File /0O Tools

The ECS standard file format for transmission of datasets is National Center for Supercomputer
Application’s (NCSA’s) Hierarchical Data Format (HDF). ECS has built extensions to NCSA
HDF, known as HDF-EOS, which will support most recognized EOS era earth sciences data
structures. Presently these data structures are grid, point and swath structures. If, in some cases,
these are not sufficient, NCSA HDF could be used along with ECS metadata to specify an output
file. Version 2.0 of HDF-EOSis delivered with SCF Toolkit 5.2.

HDF-EOS is built on HDF low level functions and NCSA conventions were adhered to. The
most prominent example is the user input of physical file handles. HDF requires physical
handles, while the SDP toolkit requires logical handles. In order to make the toolkit compatible
with HDF, the user will make one additional call to a process control function, obtain a physical
handle and then open an HDF (HDF-EOS) file. Toolkit error handling functions may be used as
necessary or desired. See the example in this section.

Important: HDF was designed to be a transport file format only, and support for such endeavors
as updating a pre-existing file is very weak. Because of this and other performance
considerations, HDF may not be the best choice of file format to use in internal processing of
your files. We therefore strongly recommend that you use the Generic (Section 6.2.1.3) and
Temporary (Section 6.2.1.6) 1/0 functions for internal processing, and reserve the use of HDF
for initial read and final write of data products meant for archival and distribution.

EXAMPLE OF USAGE OF NCSA HDF FUNCTIONS

The following code fragments are simple examples of how the science software might use the
SDP Toolkit logical-to-physical filename translation function in conjunction with the NCSA
HDF open function. See Sections 6.2.2, 6.2.3, Appendices C and B.

The examples assume the following exists in the Process Control File (PCF):
? PRODUCT OUTPUT FILES
399)test10.hdf |/fire2/toma/datal|||3
399)test9.hdf |/fire2/tomaldata|||2
399)test8.hdf |/fire2/tomaldata|||1

C #i ncl ude <PGS_PC. h>
#i ncl ude <hdf. h>
#i ncl ude <dfi.h>
#define HDF_I NFI LE 399
PGSt _i nt eger version;
char physical _fil ename[PGSd_PC_FI LE_PATH MAX] ;
PGSt _SMF_status returnStatus;
i nt 32 hdf _st at us;
int16 n_dds;
/*

6-36 333-CD-004-002

FORTRAN:

Begi n exanpl e
*/
version = 1;
returnStatus = PGS _PC Cet Ref erence
(HDF_FILE, &version, physical _filename);
/*
Vari abl e physical _filenane now contains the string
“/fire2/toma/ data/test10. hdf”
Vari abl e version now contains the value 2, i.e., the nunber
of versions left in order, belowthis version in the PCfile
*/
/*
Qpen the HDF file
*/
n_dds = 5; /* No. HDF data descriptor blocks */
hdf st atus = Hopen(physical filenane, DFACC CREATE, n_dds);

inmplicit none

| NCLUDE ‘ PGS_SMF. f’

| NCLUDE ‘PGS_PC. f

| NCLUDE “PGS_PC 9. f’

| NTEGER HDF_I NFI LE
PARAVETER (HDF_I NFI LE=399)
CHARACTER* (*) physi cal fil enane
| NTEGER pgs_pc_getreference
| NTEGER version

| NTEGER returnstatus

| NTEGER hdf st at us

| NTEGER ndds

Begi n exanpl e

version =1
returnstatus = pgs_pc_getreference
(HDF_I NFI LE, version, physicalfilename)

C

C Vari abl e physical fil enane now contains the string

C “/fire2/toma/ datal/test10. hdf”

C Vari abl e versi on now contains the val ue 2,

6-37

i.e., the nunber

333-CD-004-002

C of versions left in order below this version in the PC file
C

C Open the HDF file

C
ndds = 5 I No. HDF data descriptor blocks
hdf st at us = hopen(physi cal fil enanme, DFACC_CREATE, ndds)
NOTES:
a. In order for this tool to work properly in the SCF environment, a Process Control File

(PCF) must first be created by the science software developer. This file is part of the
mechanism that maps the logical file identifiers in the science code to physical filenames.
(This mapping will be performed by the scheduling subsystem in the DAAC
environment.) See Section 4.2.2, “File Management,” for further discussion. UNIX
environment variable $PGS _PC _INFO_FILE must point to the thisfile.

In general, the PCF created by the user must follow the format given in Appendix C.
Currently, the Toolkit installation script installs HDF 4.1r1.

Functions that write error messages to a log file are now available. See the Status
Message (SMF) tool section.

6.2.1.3 Generic File /0 Tools

This section includes tools for performing I/O functions on files that are not in the ECS standard
format, i.e., HDF. The file open tools (Gen_Open and Gen_OpenF) are used by the science
software to open miscellaneous files, which means any files that are not HDF, Level O, ancillary,
temporary or intermediate files (see sections 6.2.1.2, 6.2.1.1, 6.3.1, and 6.2.1.6). The file close
tools (Gen_Close and Gen_CloseF) are used in science software to close these miscellaneous
files, and also to close temporary and intermediate files.

Thetoolsin this section are also used by other Toolkit functions, to access ancillary files (section
6.3.1), Level Ofiles (section 6.2.1.1) and other miscellaneous files.

There are three items that apply to this entire subgroup of tools:

a. These tools only perform open and close functions on files. Reads, writes and other 1/0

functions are to be done by native C and FORTRAN 1/0.

Due to file handle and other considerations it was not possible to bind FORTRAN to the
C tools using the macro binding package. Unlike the rest of the Toolkit, these functions
have separate FORTRAN versions.

Science software should use the PGS |O_Temp_Open tool to open a temporary or
intermediate file; see Section 6.2.1.6.

6-38 333-CD-004-002

Special note regarding FORTRAN 90: Tools PGS 10 _Gen_OpenF and
PGS 10_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the F90 OPEN function that are not supported in ANSI FORTRAN 77; they
do not support all F90 options of OPEN. At Toolkit installation time, you select between F77 and
F90, and the appropriate source code file is compiled; the function names are the same in both
versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in this
document as ***F90 SPECIFIC***,

6-39 333-CD-004-002

Open a Generic File (C Version)

NAME: PGS 10_Gen_Open()

SYNOPSIS:

C: #include <PGS_10.h>
PGSt SMF_status
PGS 10_Gen Open(

PGSt PC Logical file logical,
PGSt _10_Gen AccessType file access,
PGSt 10 _Gen FileHandle **file_handle,
PGSt_integer file_version)

FORTRAN: (not applicable)

DESCRIPTION: Upon a successful call, this function will provide the argument
PGSt |O_Gen_FileHandle to support other “C” library stream
manipulation routines.

INPUTS: file_logical-User defined logical file identifier
file_access-type of access granted to opened file:

Table 6-8. File Access Type
Toolkit C Description
PGSd_IO_Gen_Read “r Open file for reading
PGSd_IO_Gen_Write “w” Open file for writing, truncating existing file to 0 length, or creating a new file
PGSd_IO_Gen_Append “a’ Open file for writing, appending to the end of existing file, or creating file
PGSd_IO_Gen_Update “r+” Open file for reading and writing
PGSd_IO_Gen_Trunc “wH+" Open file for reading and writing, truncating existing file to zero length, or
creating new file
PGSd_IO_Gen_Append “at+” Open file for reading and writing, to the end of existing file, or creating a
Update new file; whole file can be read, but writing only appended

OUTPUTS:

file_version-specific version of the logical file. (NOTE: this value will
default to ‘1’ for the interim delivery. Multiple file versions will be
acapability in Toolkit 3)

file_handle-used to manipulate files with other “C” library stream 1/0
routines

6-40 333-CD-004-002

RETURNS:
Table 6-9. PGS I0_Gen_Open Returns

Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX system error
PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_FILE_NOEXIST No entry for file logical in $PGS_PC_INFO_FILE
PGSIO_E_GEN_REFERENCE_FAILURE Other error accessing $PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_ENVIRONMENT Environment error reported by Process Control

(NOTE: the above are short descriptions only; full text of messages
appearsin files $PGSM SG/PGS _10_1.t. Descriptions may changein
future releases depending on external ECS design.)

EXAMPLE: /1 This exanple illustrates how to open a Product OQutput
File for witing //
PGSt _SMF_st at us retur nSt at us;
PGSt _PC Logi cal | ogi cal ;

PGSt _| O Gen_AccessType access;
PGSt | O Gen_Fil eHandl e *handl e;

PGSt i nt eger versi on;
| ogi cal = 10;
version = 1; // will default to 1 for Toolkit 3 on out //

access = PGSd | O Gen Wite;
returnStatus = PGS_| O Gen_Open(| ogical, access, &andl e,

version);
if (returnStatus != PGS _S SUCCESS)
{
got o EXCEPTI ON;
}
EXCEPTI ON:
NOTES: A file opened for write that already exists will be overwritten.

This function will support all POSIX modes of fopen.

While all modes of access are supported for this tool, those modes that
allow for writing to afile (i.e.,, not PGSd_10O_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.
The only exceptions to this are for Support Output files that may need to
be archived, but which are not considered to be products.

6-41 333-CD-004-002

During testing of this tool, the mode AppendUpdate (a+)!! was found to
produce results that were not consistent with the documented POSIX
standard. The sort of behavior that was typically observed was for data,
buffered during a read operation, to be appended to the file along with
other data that was being written to the file. Note that this behavior could
not be attributed to the Toolkit since the same behavior was revealed when
purely “POSIX” calls were used.

IMPORTANT TOOLKIT 5NOTES

The following environment variable MUST be set to assure proper
operation:

PGS PC INFO_FILE path to process control file

However, the following environment variables are NO LONGER
recognized by the Toolkit as such:

PGS _PRODUCT_INPUT path to standard input files
PGS PRODUCT_OUTPUT path to standard output files
PGS SUPPORT _INPUT path to supporting input files
PGS_SUPPORT_OUTPUT path to supporting output files

Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentially, each has been replaced by a
global path statement for each of the respective subject fields within the
PCF. To define aglobal path statement, simply create a record that begins
with the ‘I’ symbol defined in the first column, followed by the global
path to be applied to each of the records within that subject field. Only one
such statement can be defined per subject field and it must be appear prior
to any dependent subject entry.

The status condition PGSIO_E_ GEN_BAD_ ENVIRONMENT now
indicates an error status on the global path statement as defined in the
PCF, and NOT on an environment variable. However, as with previous
releases, the status message associated with this condition may reference
the above “tokens,” but this is only to indicate which of the global path
statements is problematic.

REQUIREMENTS: PGSTK-0360, PGSTK-1360

6-42 333-CD-004-002

Open a Generic File (FORTRAN Version)

NAME:
SYNOPSIS:
C:
FORTRAN:

DESCRIPTION:

INPUTS:

PGS 10_Gen_OpenF()

(not applicable)

INCLUDE ‘PGS SMF.f’
INCLUDE ‘PGS PC.f’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS I10.f
INCLUDE ‘PGS IO_1.f

integer function pgs_io_gen openf(file_logical, file_access,
record_length, file_handle,
file_version)

integer file logical
integer file_access
integer record_length
integer file_handle
integer file_version

Upon a successful call, this function will allocate a logical unit number to
support FORTRAN READ and WRITE statements. Thisis returned to the
user via the parameter file_handle. The user provides the logical file
identifier and file version number, which internally get mapped to the
associated physical file.

file logical-User defined logical file identifier

file_access-type of access granted to opened file:

Table 6-10. File Access Type (1 of 2)

PGS FORTRAN Access Mode | Rd/Wr/Update/ | FORTRAN 77/90 | FORTRAN 77/90
Append ‘access=’ ‘form=’
PGSd_I0_Gen_RSegFrm Read Sequential Formatted
PGSd_IO_Gen_RSequnf Read Sequential Unformatted
PGSd_IO_Gen_RDirFrm Read Direct Formatted
PGSd_I0_Gen_RDirUnf Read Direct Unformatted
PGSd_IO_Gen_WSeqgFrm Write Sequential Formatted
PGSd_IO_Gen_WSeqUnf Write Sequential Unformatted
PGSd_IO_Gen_WDirFrm Write Direct Formatted

6-43 333-CD-004-002

Table 6-10. File Access Type (2 of 2)

PGS FORTRAN Access Mode | Rd/Wr/Update/ | FORTRAN 77/90 | FORTRAN 77/90
Append ‘access=’ ‘form=’
PGSd_I0_Gen_WDirUnf Write Direct Unformatted
PGSd_I0_Gen_USegFrm Update Sequential Formatted
PGSd_IO_Gen_USequUnf Update Sequential Unformatted
PGSd_IO_Gen_UDirFrm Update Direct Formatted
PGSd_IO_Gen_UDirUnf Update Direct Unformatted
EQ0 SPECIFIC
PGSd_IO_Gen_ASegFrm Append Sequential Formatted
PGSd_I0_Gen_ASeqUnf Append Sequential Unformatted

record_length-record length must be greater than O for direct access

F90 SPECIFIC must be greater than or equal to O for sequential access; if O, file is
opened with default record length

file_version-version of file to open (minimum value = 1)

OUTPUTS: file_handle-used to manipulate files READ and WRITE
RETURNS:
Table 6-11. PGS _I0O_Gen_OpenF Returns
Return Description
PGS_S SUCCESS Successful completion
PGSIO_E_NO_FREE_LUN All logical unit numbers are in use
PGSIO_E_GEN_OPENMODE lllegal open mode was specified
PGSIO_E GEN_OPEN_OLD Attempt to open with STATUS=0LD failed
PGSIO_E_GEN_OPEN_NEW Attempt to open with STATUS=NEW failed
PGSIO_E_GEN_OPEN_RECL Invalid record length specified
PGSIO_E_GEN_FILE_NOEXIST File not found, cannot create
PGSIO_E_GEN_REFERENCE_FAILURE Can't do Temporary file reference
EXAMPLE: i nt eger r et ur nst at us
i nt eger file_logical
i nt eger file_access
i nt eger record | ength
i nt eger file_handle
i nt eger file_version

file version= 3
file_logical = 101
file_ access = PGSd_| O Gen_WseqFrm

6-44 333-CD-004-002

returnstatus = PGS | O Gen_OpenF(file_ logical, file_access,
record_|l ength, file_handle,
file_version)

if (returnstatus .NE. PGS_S SUCCESS) then

C goto 1000
end if

1000 <error handling goes here>

NOTES:

While all modes of access are supported for this tool, those modes that
allow for writing to afile (i.e.,, not PGSd_10_Gen_Read) are intended for
Toolkit access only. The only files that the science software should write
to are product output files (HDF) and Temporary, or Intermediate files.

In order to ascertain the number of versions currently associated with the
logical identifier in question, make a call to
PGS _PC_Get NumberOfFiles() first (Toolkit 3 and later.)

Dueto the nature of FORTRAN 10, it is possible to write afile opened for
reading as well as read a file opened for writing. The matching of access
mode to 10 statement cannot be enforced by the tool. This is up to the
user.

Once afile has been opened with this tool, it must be closed with a call to
PGS I0_Gen_CloseF before being re-opened. Failure to do thiswill result
in undefined behavior.

IMPORTANT TOOLKIT 5NOTES

The following environment variable MUST be set to assure proper
operation:

PGS PC INFO_FILEpath to process control file

However, the following environment variables are NO LONGER
recognized by the Toolkit as such:

PGS PRODUCT _INPUT path to standard input files
PGS PRODUCT_OUTPUT path to standard output files
PGS _SUPPORT_INPUT path to supporting input file
PGS _SUPPORT_OUTPUT path to supporting output files

Instead, the default paths, which were defined by these environment
variables in previous Toolkit releases, may now be specified as part of the
Process Control File (PCF). Essentialy, each has been replaced by a

6-45 333-CD-004-002

global path statement for each of the respective subject fields within the
PCF. To define aglobal path statement, simply create a record that begins
with the ‘I symbol defined in the first column, followed by the global
path to be applied to each of the records within that subject field. Only one
such statement can be defined per subject field and it must be appear prior
to any dependent subject entry.

It is error condition to have an input file specified in the PCF that does not
exist on disk. The behavior of the tool is undefined when attempting to
open such afilefor reading.

REQUIREMENTS: PGSTK-0360

6-46 333-CD-004-002

Close a Generic File, Temporary or Intermediate File (C Version)

NAME: PGS 10_Gen_Close()
SYNOPSIS:
C #include <PGS 10.h>
PGSt_SMF_status
PGS 10_Gen Close(
PGSt IO _Gen FileHandle *file_handle);
FORTRAN: (not applicable)
DESCRIPTION: This tool closes a stream opened by a call to the “C” version of the
Generic 1/0O Open tools.
INPUTS: fileHandle-file handle returned by PGS IO_Gen_Open or
PGS 10_Gen _Temp_Open.
OUTPUTS: NONE
RETURNS:
Table 6-12. PGS I0O_Gen_Close Returns
Return Description
PGS_S_SUCCESS Success
PGSIO_E_GEN_CLOSE Error closing file
EXAMPLES: PGSt _| O Gen_Fil eHandl e *handl e;
PGSt _SMF_st at us returnStatus;
returnStatus = PGS | O Gen_Cl ose(handle);
if (returnStatus != PGS _S SUCCESS)
{
got o EXCEPTI ON;
}
el se
{
}
EXCEPTI ON:

6-47 333-CD-004-002

NOTES: Usage of thistool is optional, but failure to close afile could result in loss
of data, destroyed files, or possible intermittent errorsin your program.

As a conseguence of calling thistool, any data left unwritten in the output
buffer will be flushed to the output stream; likewise, any data left unread
in the input buffer will be discarded.

Never attempt to close a file that has not been initialized, or previously
used in an open call. Failure to heed this warning will result in program
abort on many platforms.

REQUIREMENTS: PGSTK-0360

6-48 333-CD-004-002

Close a Generic File (FORTRAN Version)

NAME: PGS 10_Gen_CloseF()
SYNOPSIS:

C (not applicable)

FORTRAN: INCLUDE ‘PGS SMF.f’

INCLUDE ‘PGS PCf’
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS _|O.f
INCLUDE ‘PGS |0 _1f

integer pgs_io_gen_closef(file_handle)
integer file_handle

DESCRIPTION: This tool closes a FORTRAN 1O unit opened by call to
PGS 10_Gen OpenF or PGS _|0_Gen_Temp_OpenF.

INPUTS: file_handle-file handle returned by PGS 10_Gen_OpenF or
PGS 10_Gen _Temp_OpenF
OUTPUTS: NONE
RETURNS:
Table 6-13. PGS _I0_Gen_CloseF
Return Description

PGS_S SUCCESS Successful completion

PGSIO_E GEN_CLOSE Attempt to close file failed

PGSIO _E GEN_ILLEGAL LUN file_handle LUN was out-of-bounds

PGSIO_W_GEN_UNUSED_LUN file_handle LUN was not in use
EXAMPLES: i nt eger handl e

i nt eger ret ur nst at us

returnstatus = PGS_| O Gen_C oseF(handl e)
if (returnstatus != PGS S SUCCESS) goto 1000

100 <error handling goes here>

NOTES: Failure to close a file could result in loss of data, destroyed files, or
possible intermittent errorsin your program.

6-49 333-CD-004-002

This tool expects the input file handle to point to a file that was
successfully opened via a call to either the tool PGS _10_Gen_OpenF or
the tool PGS IO_Gen _Temp_OpenF. If thisis not the case, the result of
calling the tool is undefined.

REQUIREMENTS: PGSTK-0360

6-50 333-CD-004-002

6.2.1.4 Metadata Tools

This set of tools is designed to manage the metadata that are generated with each EOS product,
i.e., the granule-level metadata. The tools also provide a mechanism for populating the inventory
data base tables with the metadata for each granule. The purpose of thesetoolsis:

* To ensure that the metadata produced conforms to ECS standards in content and format;
and

* To provide access files from within the science algorithms to metadata contained in input
files.

The overdl context of metadata in ECS, and further details on the use of the metadata tools are
provided in Appendix J of this document.

The metadata tools in the SDP toolkit library are called from within a PGE to read and write
metadata. The metadata attributes that will be assigned values during processing are identified in
the metadata configuration file (MCF). The MCF is read into memory and toolkit calls are used
to populate values for the attributes. When the metadata population process is complete,
metadata “blocks” are written to product output files as HDF data objects called global attributes
(not to be confused with individual metadata elements which are also called attributes). All
output metadata is in object description language (ODL).

Multiple MCFs may be opened and written to from within a single PGE. The five metadata tools
that are used in conjunction with MCFs must be called in a specific sequence, once for each
MCEF. First, each MCF must be initialized with PGS _MET _Init, which also assigns values for
“system” metadata. Values generated within the PGE are assigned to attributes in the MCF using
PGS MET_SetAttr. To return the value of any metadata attribute in the MCF that has received
a value PGS _MET_GetSetAttr may be used. After all values have been assigned,
PGS MET_Write is used to write the metadata to the product or, alternatively for non-HDF
products, to a separate ASCII metadata file. Finally, PGS MET_Remove frees up memory used
by the MCFs.

Two additional toolkit routines are used to read metadata values from within the PGE. These
may be called independently of any MCF. PGS MET_GetPCAttr may be used to return the
value of metadata from input files identified to the process control (PC) system.
PGS MET_GetConfigData may be used to return the value of runtime metadata from the
Process Control File.

The FORTRAN versions of PGS MET_SetAttr, PGS _MET_GetConfigData,
PGS MET_GetSetAttr, and PGS MET_GetPCAttr must include an underscore and an extra
character at the end of the function name to indicate the data type being handled: _S for string
values, _| for integer and unsigned int values, and _D for single or double precision real values.
For example, the function PGS _MET _SetAttr actually represents three different FORTRAN
functions:

* PGS MET_SetAttr_Sto set the value of string and datetime attributes

6-51 333-CD-004-002

« PGS MET_SetAttr | to set integer and unsigned int values; and
e PGS MET_SetAttr D to set real or double values

As discussed in greater detail in Appendix J, two separate metadata blocks are handled by the
metadata tools. These are called inventory and archive. Inventory consists of “core” attributes,
i.e. those that are part of the ECS Data Model, which will reside in the ECS inventory tables and
will thus be available to query on in locating granules. Archive metadata refers to metadata that a
data producer wants to be included with the data granule, but need not be searchable by the
system and will therefore not be used to populate the inventory tables. Archive metadata can,
however, be read from HDF input files using toolkit calls.

The inventory and archive blocks are referenced in the toolkit calls by an array, e.g.
mdHandles(n), where n=1 (for C, n=2 for FORTRAN) indicates inventory metadata and n=2 (or
n=3 for FORTRAN) indicates archive metadata. To write an ASCII version of the metadata for
non-HDF files mdHandles(0) (or n=1 for FORTRAN) is used to indicate that all metadata block
are to be written together. It is possible to define other blocks and write them to HDF product
output files or to ASCII metadata output files, but these will not be handled by the system. For
example, if the granule is subsetted using ECS routines, only the inventory and archive blocks
will be copied into the resultant file.

Additional description and extensive examples of the usage of MET tools can be found in the
HDF-EOS Users Guide for the ECSProject, Vol. 1, Section 7 and 8.

A description of each MET tool follows:

6-52 333-CD-004-002

Initialize a Metadata Configuration File (MCF) into Memory

NAME: PGS MET _Init()
SYNOPSIS:
C #include"PGS _MET.h"
PGSt SMF_status
PGS MET _Init(
PGSt PC Logical fileld,
PGSt MET _adl handles mdHandles)
FORTRAN: include"PGS MET_13.f"
include "PGS_MET .f"
include "PGS SMF.h"
integer function pgs_met_init(fileld, mdHandles)
integer fileld
character* PGS MET_GROUP_NAME L
mdHandles(PGS MET_NUM_OF _GROUPS)
DESCRIPTION: Initializes M CF file containing metadata.
INPUTS:
Table 6-14. PGS _MET _Init Inputs
Name Description Units Min Max
fileld MCF file id none variable variable
OUTPUTS:
Table. 6-15. PGS_MET _Init Outputs
Name Description Units Min Max
mdHandles metadata groups in MCF none N/A N/A

6-53

333-CD-004-002

RETURNS:
Table. 6-16. PGS _MET Init Returns

Return Description

PGS_S_SUCCESS

PGSMET_E_LOAD_ERR Unable to load <MCF> information. Lower level routines contain more
information

PGSMET_E_GRP_ERR Master groups are not supposed to be enclosed under any other group
or object. The offending group is <name>

PGSMET_E_GRP_NAME_ERR Group name length should not exceed PGS_MET_GROUP_NAME_L
5.

PGSMET_E_NO_INVENT_DATA Inventory data section not defined in the MCF

PGSMET_E_DUPLICATE_ERR There is a another object with the same name for object <name>
Duplicate names are not allowed within master groups

PGSMET_E_NUM)FMCF_ERR Unable to load. The number of MCFs allocated has been exceeded.

PGSMET_E_PCF_VALUE_ERR Metadata objects to be set from values defined in PCF could not be
set. See error returns form the lower level routines. Initialization takes
place nevertheless.

EXAMPLES:

#i ncl ude "PGS_MET. h"

#def i ne I NVENTORYMETADATA 1

#define MODIS FILE 10253 /* This value nust also be defined in the PCF
10253| hdftestfil e| / hone/ asi yyi d/ pgetest/fortran/|| | hdf
testfile|l */

#define ODL_IN_MEMORY O

int main()

{

PGSt MET al | _handl es handl es;

char * fileNane = "/ hone/ nodi s/ hdftestfile"; /* the user

shoul d change this accordingly */

i nt 32 hdf Ret, sdid;

ext ern AGGREGATE PGSg_ MET_Mast er Node;

PGSt _SMF_status ret = PGS_S_SUCCESS;

PGSt _i nt eger fileld = PGSd_MET_MCF_FI LE;

PGSt _integer i;

doubl e dval , dval[6];
char* sval;

sval = (char*) malloc(30);

ret= PGS_MET_Init(fileld, handles);
if(ret !'= PGS_S_SUCCESS)

6-54 333-CD-004-002

{
printf("initialization failed\n");
return O;

}

PGS_MET_Renove();
printf("SUCCESS\n");
return O;

}

FORTRAN:

OO0 0O0

i ncl ude "PGS _SM-. f"
i ncl ude "PGS_MET_13.f"
i ncl ude "PGS_MET. f"
the file id nust also be defined in the PCF as fol |l ows
10253| hdftestfil e| / hone/ asi yyi d/ pgetest/fortran/| || hd
testfile|l

i nteger pgs_net_init
i nteger MODI S _FILE
parameter (MODI S _FI LE = 10253)

i nt eger | NVENTORYMETADATA
par amet er (| NVENTORYMETADATA = 2)
i nteger ODL_I N MVEMVORY
paraneter (ODL_| N MEMMORY = 1)
t he groups have to be defined as 49 characters |ong.
The Cinterface is 50.
The cfortran.h nmallocs an extra 1 byte for the null
character '"\0/', therefore making the actual length of a
string pass as 50.
character*PGS_MET_GROUP_NAME L
ndHandl es(PGS_MET_NUM_OF _GROUPS)
character*50 fil eNane
i nt eger result
i nt eger pgs_met _init
i nt eger hdf Ret urn
doubl e precision dval (1), dval (6)
char *80 sval (5)
you rmust change this file spec in the PCF and the exanple
before running this exanple.
fileNane = "/home/ asiyyid/ pgetest/fortran/ hdftestfile"”
result = pgs_net_init(PGSd_MET_MCF_FI LE, groups)
if(result.NE PGS S SUCCESS) then
print *, "Initialization error. See Logstatus for details”
endi f

6-55

333-CD-004-002

print *, "SUCCESS"
end

NOTES: The MCF file must be in the format described in Appendix J.

Effective with the November 1996 SCF Toolkit release, multiple MCFs can now be
initialized by repeated calls to this function.

REQUIREMENTS: PGSTK-0290, PGSTK-0370

6-56 333-CD-004-002

Assign Values to Metadata Attributes

NAME: PGS MET_SetAttr()
SYNOPSIS:
C #include"PGS _MET.h"
PGSt_SMF_status
PGS MET_SetAttr(
PGSt MET handle mdHandle,
char *attrNameStr,
void *attrValue)
FORTRAN: include"PGS MET_13.f"
include"PGS_MET .f"
include "PGS_SMF.h"
integer function pgs_met_setattr(mdHandle, attrNameStr, attrVaue)
character* (*) mdHandle
character* (*) attrName
‘user defined' attrvValue
DESCRIPTION: After an MCEF file is initialized into memory the user may assign values to
metadata attributes using PGS _MET _SetAttr(). The values can be of following
types and their array counterparts
PGSt_integer, PGSt_double, PGSt_real, char * (string)
INPUTS:
Table 6-17. PGS_MET_SetAttr Inputs
Name Description Units Min Max
mdHandle metadata group in MCF none N/A N/A
attrNameStr | name.class of parameter none N/A N/A
attrValue value of attribute to be inserted none N/A N/A
OUTPUTS: None

6-57 333-CD-004-002

RETURNS:

Table 6-18. PGS _MET SetAttr Returns

Return

Description

PGS_S_SUCCESS

PGSMET_E_NO_INITIALIZATION

Metadata file is not initialized

PGSMET_E_NESTED_OBJECTS

Object descriptions enclosing related objects must not be
enclosed themselves by other objects

PGSMET_E_ODL_MEM_ALLOC

ODL routine failed to allocate memory

PGSMET_E_PARENT_GROUP

Multiple objects must have enclosing groups around them

PGSMET_E_CLASS_PARAMETER

Container object must also have class parameter defined

PGSMET_E_METADATA_CHILD

metadata Objects are not allowed to enclose other objects

PGSMET_W_NOT_MULTIPLE

Object is not supposed to be multiple therefore resetting the
value. The user may have given a class with the metadata
name

PGSMET_E_ILLEGAL_HANDLE

Handle is illegal. Check that initialization has taken place.

PGSMET_E_ILLEGAL_TYPE

lllegal type definition for metadata <attrName>. It should be a
string

PGSMET_E_NO_DEFINITION

Unable to obtain <attr> of metadata <parameter> Either type
or numval not defined

PGSMET_E_ILLEGAL_NUMVAL

lllegal NUMVAL definition for metadata <attrName>. It should
be an integer

PGSMET_E_DD_UNKNOWN_PARM

The requested parameter <parameter name> could not be
found in <agg node>

PGSMET_E_NEW_ODL_DATA_ERR

Unable to create a new odl <parameter>, probably due to lack
of memory

PGSMET_E_INV_DATATYPE

Invalid data type definition in MCF for parameter <name>

PGSMET_E_INVALID_LOCATION

Invalid location for setting attribute value

EXAMPLES:

C:

/* For setting Inventory Attributes in the MCF */

/* NUWAL i the MCF = 6 */

dval s[0] = 10.
dval s[1] = 20.
dval s[2] = 30.
dval s[3] = 40.
dval s[4] = 50.
dval s[5] = 60.

e

ret = PGS_MET_Set Attr (handl es[| NVENTORYMETADATA] ,

"GRi ngPoi nt Latitude. 1",

dval s);

6-58 333-CD-004-002

/* For setting Product Specific Attributes */

strcpy(i nformati onname, " Testi ngAttributel”);

ret =PGS_MET_Set At t r (handl es[| NVENTORYMETADATA] ,
"Additional Attri buteNanme. 1", & nf or mat i onnane) ;
strcpy(i nformati onnane, "testi ngAttri buteVal uel");
ret =PGS_MET_Set At t r (handl es[| NVENTORYMETADATA] ,
FORTRAN:

C For setting Inventory Attributes in an HDF file

dval s(1) = 10.0
dval s(2) = 20.0
dval s(3) = 30.0
dval s(4) = 40.0
dval s(5) = 50.0
dval s(6) = 60.0
ret =

pgs_met _setattr_d(groups(| NVENTORYMETADATA) ,
1“GRi ngPoi nt Lati tude. 1", dvals)

C For setting Product Specific Attributes

i nformati onnane = "TestingAttributel”

ret = pgs_net_setattr_s(groups(| NVENTORYMETADATA) ,
1" Addi ti onal Attri but eNane. 1", i nf or mat i onnane)

i nfornati onnane = "testingAttributeVal uel”

ret = pgs_net_setattr_s(groups(| NVENTORYMETADATA) ,
1" Par anet er Val ue. 1", i nf or mat i onnane)

6-59

333-CD-004-002

NOTES:

1. Multiplicity:

In TK5, a CLASS statement was introduced so that metadata objects with the same name
could be distinguished from each other in the ODL tree. In TK5.1 this functionality was
further extended to allow a single metadata object in the MCF to have multiple instances.
This means that all the metadata objects within a master group in the MCF must have
unique names. The use of the CLASS field in the name of a metadata attribute is optional
and is needed only when the attribute in the MCF is within a group having a CLASS
statement. See Appendix Jfor details and examples.

2. Nested M etadata:

There are certain metadata objects which are always described as a group of related
metadata. To allow such groups to stay together in the MCF and the ODL tree, nested
metadata objects are defined in the MCF using "Container Objects.” in the MCF with
related metadata as its child members. The child members are set individually as before.
The container object does not have a value since it defines a concept and not an entity.

In the case of multiple container objects (e.g. there could be more than one instances of
gring polygons), when acall to set a value of one of the child metadata objects is made, it
is the container object which is duplicated with a different class creating instances of all
the child members. It is the users responsibility to set their values as well with subsequent
call. Examples are given in Appendix J.

3. Array Filling:

TK5 imposed a restriction that metadata objects with values defined as arrays must be set
with all the elements filled. This restriction is now lifted and the user has the freedom to
set 1 to n values for a particular parameter where n is defined in the NUM_VAL field in
the MCF. In this case where the values are being retrieved, the end of array is marked by:

INT_MAX for integers
UINT_MAX for unsigned integers
DBL_MAX for doubles

NULL char * (strings)

These values are defined in the limits.h and floats.h. Its analogous to null terminated
strings defined as char[] arrays.

FORTRAN Users:

Use PGSd MET_INT_MAX, PGSd_MET_DBL_MAX and PGSd_MET_STR_END
respectively.

The user can check for these values to determine the actual number of values retrieved. In
case where the number of values retrieved is equal to n, there is no end of array marker
since user is expected to know n for setting the return buffer.

6-60 333-CD-004-002

4. Permissible Data L ocations:

PGS MET_SetAttr can be used to assign values to metadata attributes which have
DATA_LOCATION = “PGE”, “MCF”, “PCF”, or “TK". Any attribute with
DATA_LOCATION =“DSS’, “DAAC,” or “DP” can not be set by the PGE. An attempt
to do so with PGS _MET_SetAttr will result in an error message of
PGSMET_E _INVALID_LOCATION being generated in the runtime LOG file.

5. Metadata Types:

The tool provides a void interface through which different types of metadata can be set.
The types supported are:

PGSt_integer
PGSt_uinteger
PGSt_double
string

and their arrays counterparts. PGSt_real has been omitted because of the changes in
TK5.1.

It is very important that variable string pointers are used for string manipulations. Thisis
because void interface is used. For example, the following piece of code would give an
error or unexpected results:

i:har a[1007 ;

;st rcpy(a, "MODIS");

retVal = PGS_MET_Set At t r (ndHandl es| GROUP_GRANULE_DATA] ,

"SATELLI TE_NAME", a);

retVal = PGS MET_Set Attr (nmdHandl es[GROUP_GRANULE DATA],

"SATELLI TE_NAME', &a);

The first call is wrong because the routine expects char** but cannot force it because of
void interface. The second call is wrong too because of the declaration of ‘a which is a
constant pointer, i.e. it would always point to the same location in memory of 100 bytes.
Only the following construct will work with the routine in which the string pointer is
declared as avariable

char *a = "MODI §"

.ret Val = PGS _MET_Set Att r (ndHandl es[GROUP_GRANULE DATA],
"SATELLI TE_NAME", &a);

The above discussion is also true for arrays of strings. For example, the following is not
allowed for the same reasons as above

char a[10] [100] ;

6-61 333-CD-004-002

ét rcpy(af[0], "MODIS");
retVal = PGS_MET_Set Attr (ndHandl es[GROUP_GRANULE_DATA] ,
"SATELLI TE_NAME", &a[0]);

while the following is acceptable:

éhar *a[10];

a[0] = "MDIS";
retVval = PGS _MET_SetAttr(mdHandlesf GROUP_GRANULE_DATA],
"SATELLITE_NAME", &24[0]):

IMPORTANT

The void buffer should always be large enough for the returned values otherwise routine
behavior is uncertain.

REQUIREMENTS: PGSTK-0290 PGSTK-0410 PGSTK-380

6-62 333-CD-004-002

Accesses Metadata Attributes Already Set in Memory

NAME:
SYNOPSIS:
C:

FORTRAN:

PGS MET_GetSetAttr ()

#include"PGS _MET.h"

PGSt SMF_status
PGS MET_GetSetAttr(
PGSt MET handle mdHandle,

char* attrNameStr,

void* attrvValue)
include "PGS MET 13.f"
include "PGS_MET.f"
include "PGS_SMF.h"

integer function pgs_met_getsetattr(mdHandle, attrNameStr, attrValue)
character* mdHandle

character* attrName

‘user defined' attrVaue

DESCRIPTION: The MCEF is first initialized into memory and some of the parameters are

automatically set and some are set by the user using PGS MET_SetAttr(). This
tool isused to retrieve these values.

INPUTS:
Table 6-19. PGS _MET_GetSetAttr Inputs
Name Description Units Min Max
mdHandle metadata group none N/A N/A
attrName name.class of parameter none N/A N/A
OUTPUTS:
Table 6-20. PGS_MET_GetSetAttr Outputs
Name Description Units Min Max
attrVValue value of attribute to be passed | none N/A N/A

back to the user

6-63 333-CD-004-002

RETURNS:
Table 6-21. PGS_MET_GetSetAttr Returns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized

PGSMET_E_DD_UNKNOWN_PARM The requested parameter <parameter name> could not
be found in <agg node>

PGSMET_W_METADATA NOT_SET The metadata <name> is not yet set

PGSMET_E_NO_DEFINITION Unable to obtain <attr> of metadata <parameter>

Either NUM_VAL or type is not defined
PGSMET_E_ILLEGAL HANDLE Handle is illegal. Check that initialization has taken place.
EXAMPLES:
C:

/* For accessing Inventory Attributes in an HDF file */

for(i =0; i < 6; i++) dvals[i] = 0.0;

ret = PGS_MET_GCet Set At tr (handl es[| NVENTORYMETADATA] ,
"GRi ngPoi nt Latitude. 1", dvals);

for(i =0; i <6; i++) printf("%f", dvals[i]);
printf("\n");

/* For accessing Product Specific Attributes in an HDF file */
strcpy(sval," ");
ret =PGS_MET_Cet Set At t r (handl es[| NVENTORYMETADATA] ,
"Additional Attri buteNane. 1", &sval) ;

for(i = 0; i<1; i++) printf("%", sval);
printf("\n");

strcpy(sval," ");

" Par anet er Val ue. 1", &sval) ;

for(i = 0; i<1; i++) printf("%", sval);
printf("\n");

FORTRAN:

C For accessing Inventory Attributes in an HDF file

dval s(1) = 0.0
dval s(2) = 0.0
dval s(3) = 0.0
dval s(4) = 0.0
dval s(5) = 0.0
dval s(6) = 0.0

ret = pgs_net_setattr_d(groups[| NVENTORYMETADATA] ,
1" GRi ngPoi nt Lati tude. 1", dvals)
print *, dvals(1l), dvals(2), dvals(3), dvals(4),

6-64 333-CD-004-002

1 dval s(5), dval s(6)
C For accessing Product Specific Attributes in an HDF file

sval =" "

ret=pgs_net _setattr_s(groups[| NVENTORYMETADATA] ,

1" Addi ti onal Attri buteNane. 1", sval)
print *, sval
sval =" "

ret=pgs_net _setattr_s(groups[| NVENTORYMETADATA] ,

1" Par amet er Val ue. 1", sval)
print *, sval

NOTES: (Seenotes 1,2,3, and 4in PGS_MET_SetAttrib()
REQUIREMENTS: PGSTK-0290 PGSTK-380

6-65

333-CD-004-002

Accesses Metadata Parameters in HDF Products or
Independent ASCII Files

NAME: PGS MET_GetPCAttr()
SYNOPSIS:
C #include "PGS _MET.h"

PGSt SMF_status
PGS MET_GetPCAttr(
PGSt PC Logica fileld,
PGSt _integer version,

char * hdf AttrName,

char * parmName,

void * parmValue)
FORTRAN: include"PGS MET_13.f"

include "PGS_MET.f"
include "PGS_SMF.h"

integer function pgs_getpcattr(fileld, version, hdfAttrName, parmName,

parmValue)

character* fileld

integer version

character* hdfAttrName

character* parmName

‘user defined' parmValue
DESCRIPTION: Metadata parameters held in HDF attributes or in a separate ASCII file can be

read using this tool
INPUTS:

Table 6-22. PGS_MET_GetPCAttr Inputs
Name Description Units Min Max

fileld product file id none variable variable
version product version number none 1 variable
hdfAttrName name of HDF attribute containing metadata | none N/A N/A
parmName metadata parameter name none N/A N/A

6-66 333-CD-004-002

OUTPUTS:

Table 6-23. PGS_MET_GetPCAttr Outputs

Name Description Units Min Max
attrValue value of attribute to be passed back to the user | none N/A N/A
RETURNS:

Table 6-24. PGS _MET _GetPCAttr Returns

Return

Description

PGS_S_SUCCESS

PGSMET_E_PCREAD_ERR

"Unable to obtain <filename or attribute filename> from the PC
table" Most likely that <filename or attribute filename> is not
defined in the PCF

PGSMET_E_FILETOODL_ERR

"Unable to convert <filename> into an ODL format" error
returns from lower level routines should explain the problem

PGSMET_E_AGGREGATE_ERR

Unable to create ODL aggregate <aggregate name> It
definitely means that ODL routine has failed to allocate enough
memory

PGSMET_E_SYS_OPEN_ERR

Unable to open pc attribute file Usually if the file does not exist
at the path given, check the name and path of the file

PGSMET_E_ODLTOVAL_ERR

Unable to convert attribute values from the ODL format error
returns from lower level routines should explain the problem

PGSMET_E_NULL_PARAMETER

The requested parameter is a null value

PGSMET_E_NOT_SET

The requested parameter is not set

EXAMPLES:

C
char grpNanme[100] ;

/* For accessing Inventory Attributes in an HDF file */

for(i
ret
" GRi ngPoi nt Lat
for(i 0; i
printf("\n");

0; i

< 6;
PGS MET

< 6;

i ++) dval s[i] 0. 0;
Get PCAttr (MODI S_FI LE, 1,
i tude. 1", dvals);

i++) printf("%f",

"cor enet adat a",

dval s[i]);

/* For accessing Product Specific Attributes in an HDF file */

strcpy(sval,"

"),

ret=PGS_MET_GCet PCAttr(MODI S FILE, 1, "corenetadata",
"TestingAttributel", &val);

for(i 0;
printf("\n");

/* For accessing attributes in the ASClI

/* NOTE: For retrieving at

have to generate a group nane first

i <1;

i ++) printf("%", sval);

Metadata file */
tribute values fromthe ASCI|I netadata fil e,
before calling the function

users

6-67 333-CD-004-002

PGS MET _Get PCAttr. The procedures are as foll ows:

1

In this case the group nanme is | NVENTORYMETADATA

sprintf(grpNanme, "%%", PGSd_MET_GROUP_STR, "I NVENTORYMETADATA");
2:

ret = PGS_MET_Get PCAttr(10268, 1, grpNane, "REPROCESS|I NGPLANNED',

&sval);
*/

strcpy(sval," ");

sprintf(grpName, "%%", PGSd_MET _GROUP_STR,
"1 NVENTORYMETADATA") ;
ret = PGS MET _CGet PCAttr (10268, 1, grpNane,
" REPROCESSI NGPLANNED', &sval) ;
for(i =0; i<1; i++) printf("%", sval);
printf("\n");

/* For LandSat7 Metadata output file */

/* NOTE: For retrieving the attribute fromthe Landsat7 neta file, users have
to generate a group nane first before calling the function PGS MET_Get PCAttr.
The procedures are as foll ows:

1:
In this case the group nane is "FORMAT SUBI NTERVAL METADATA 1"
sprintf(grpNane, "%%", PGSd_MET_LSAT_GRP_STR,
" FORVAT_SUBI NTERVAL_METADATA 1");
2:
ret = PGS MET_Get PCAttr (10269, 1, grpNane,
" CONTACT_PERI OD_START_TI ME", &sval);
*/
strcpy(sval ," ");
sprintf(grpNane, "%%", PGSd_MET_LSAT_GRP_STR,
" FORVAT_SUBI NTERVAL_METADATA_1");
ret = PGS MET_CGet PCAttr (10269, 1, grpNane,
" CONTACT_PERI OD_START _TI ME", &sval);
for(i = 0; i<l; i++) printf("%", sval);
printf("\n");
FORTRAN:

char grpNane[100] ;
C For accessing Inventory Attributes in HDF file

for(i =0; i < 6; i++) dvals(i) =0.0

ret = pgs_net_getpcattr_d(MODI S FILE, 1, "corenetadata",
1 "GRi ngPoi ntLatitude.1", dvals)

print *, dval (1), dval (2), dval(3), dval (4), dval (5),
1 dval (6)

C For accessing Product Specific Attributes in HDF file

sval =
ret=pgs_net_getpcattr_s(MODI S FILE, 1, "corenetadata",

6-68 333-CD-004-002

1" TestingAttributel", &val)
print *, sval

C For accessing attributes in ASCIlI Metadata file

sval =" "

ret = pgs_net_getpcattr_s(10268, 1, grpNane,
1 " REPROCESSI NGPLANNED", &sval)

print *, sval

C For Landsat7 Metadata file
sval =" "
gr pNanme(1:) =PGSd_MET_LSAT _GRP_STR//
1" FORVAT _SUBI NTERVAL_VETADATA 1"
ret = pgs_net_getpcattr_s(10269, 1, grpNane,
1 "CONTACT_PERI OD_START_TI ME", &sval
print *, sval

NOTES: See Notes 1,2,3, and 4 in PGS MET_SetAttr

In the ECS production environment all input files are accompanied by an
ASCII version of the metadata (the .met file) so PGS MET_GetPCAttr will
always read metadata from the .met file. In the SCF environment if the data input
fileisin HDF a.met file need not be present and the metadata can be read from
the file itself. Thisis an example of how an HDF input file should be designated
in the PCF:

10253| hdf i nputfile|/ny/ product/directory/|||hdfinputfile|l

The file names in the second and sixth fields must be identifal. If the input
fileis not in HDF, the metadata will be read from an ASCII file which must be
separately identified in the sixth field of the input product entry of the PCF, as
shown in this example:

10253| i nputfile|/my/product/directory/||]inputfile.met|1

The .met file must have the same name as the product input file, with the .met
extension appended. This file must be placed in the same directory as the input
file.

Effective with the November 1996 SCF Toolkit delivery, the separate ASCII file
can now be in the same format as the output from PGS _ MET_Write().

In the ECS production environment the ASCIlI metadata file that
accompanies a data input file delivered by Science Data Server does not contain
archive metadata. For this reason, archive metadata can only be read from input
files that are in HDF. If used to read a value for a metadata attribute that is
contained in an HDF global text attribute named “archivemetadata’ or
“productmetadata’ PGS MET_GetPCAttr will attempt to read the metadata from
the HDF file, even though an ASCII .met file is present. In all other cases,
PGS MET_GetPCALttr reads the ASCII .met file.

6-69 333-CD-004-002

The ASCII file may be in one of two formats; either that written out by the
PGS MET_Write() routine or simple parameter=value construct. These formats
are shown below for asimple case

OBJECT = SOMEPARAMETER
NUM_VAL =1
VALUE =200
END_OBJECT = SOMEPARAMETER
or
SOMEPARAMETER = 200

Note that if a parameter appears twice in the ASCII file (with the same parameter
name and Class extension) only the first occurrence will be returned.

REQUIREMENTS: PGSTK-0290 PGSTK-0235

6-70 333-CD-004-002

Accesses Configuration Data in the PC Table

NAME: PGS MET_GetConfigData()
SYNOPSIS:
C #include"PGS _MET.h"

PGSt_SMF_status
PGS MET_GetConfigData(

char* attrName,
void* attrvalue)
FORTRAN: include"PGS MET_13.f"

include "PGS_MET.f"
include "PGS_SMF.h"

integer function pgs_met_getconfigdata(attrName, attrValue)
character* attrName
‘user defined' attrValue

DESCRIPTION: Certain configuration parameters are held in the PC table as follows
10220|REMOTEHOST |sandcrab

Thistool would retrieve the value "sandcrab” from the PC table given the name of
the parameter "REMOTEHOST". The parameter id 10220 is not used here. The
value string (e.g.. sandcrab) is assumed to be in ODL format and therefore

different types are supported.
INPUTS:
Table 6-25. PGS_MET_GetConfigData Inputs

Name Description Units Min Max
attrName name of parameter in PCF none N/A N/A
OUTPUTS:

Table 6-26. PGS_MET_GetConfigData Outputs
Name Description Units Min Max
attrValue value of attribute to be passed back to the none N/A N/A
user

6-71 333-CD-004-002

RETURNS:
Table 6-27. PGS_MET_GetConfigData Returns

Return Description
PGS_S SUCCESS
PGSMET_E_AGGREGATE_ERR "Unable to create ODL aggregate <aggregate name>" This

should never occur unless the process runs out of memory

PGSMET_E_CONFIG_VAL _STR_ERR | "Unable to obtain the value of configuration parameter <name>
from the PCF file". Likelihood is that either the parameter does
not exist in the PCF or the PCF itself is in error which can be
tested using pccheck.

PGSMET_E_CONFIG_CONV_ERR "Unable to convert the value of configuration parameter
<name> from the PCF file into an ODL format". Its most likely
that the string values is not in ODL format.

EXAMPLES:
C:

/* These val ues nust be defined in the PCF otherwi se error is returned
*/

ret = PGS_MET_Cet Confi gDat a(" REV_NUMBER', &ival);

strcpy(datetine, "");

ret = PGS_MET_Cet Confi gDat a(" LONGNAME", &datetine);

dval = 0;

ret = PGS _MET_Cet Confi gDat a(" CENTRELATI TUDE", &dval);
printf("%l %f %\n", ival, dval, datetine);

FORTRAN:

C Retrieve sone values fromthe PCF files. These nust be
C defined in the PCF, otherwi se the routine would return error
C Note the way _i for integer, _d for double and _s for strings are used
C at the end of the function nane. This is necessary because fortran
C conpiler would conplain about type conflicts if a generic nane
Cis used
ret = pgs_net_getconfigdata_ i ("REV_NUMBER', ival)

datetine = ""
ret = pgs_net_getconfigdata_s("LONGNAME", datetine)
dval =0

ret = pgs_net _getconfigdata_ d("CENTRELATI TUDE", dval)
if(ret.NE PGS_S SUCCESS) then
print *, "GCetConfigData fail ed.
endi f

6-72 333-CD-004-002

print *, ival, dval, datetine

NOTES: See Notes 1, 2, 3, and 4 for PGS_MET _SetAttr().

Although This tool ignores the first field in the PCF file depicting the config id, it is still
important that this field is unique for the PC utility to function correctly User is
responsible for the returned buffers to be large enough to hold the returned val ues.

Addendum for TK5.1

This routine now simply retrieves the values from the PCF and does not perform type and
range checking. The user is still required to assign enough space for the returned values.

REQUIREMENTS: PGSTK-0290 PGSTK-0380

6-73 333-CD-004-002

Write Metadata and their Values to HDF Attributes and/or

ASCII Output Files

NAME: PGS MET_Write()
SYNOPSIS:
C: #include"PGS_MET.h"

PGSt_SMF_status
PGS MET_Writg(
PGSt MET handle mdHandle,

char * hdf AttrName,
PGSt_integer hdfFileld)
FORTRAN:
include 'PGS_MET _13.f'
include 'PGS_MET.f'
include 'PGS_SMF.h'
integer function pgs_met_write(mdHandle, hdfAttrName, hdfFileld)
character* mdHandle
character* hdfAttrName
integer hdfFileld
DESCRIPTION: Thisisthe fina tool that PGE uses when al the metadata parameters are set in
memory. The tool checksthat all the mandatory parameters are set.
INPUTS:
Table 6-28. PGS_MET_Write Inputs
Name Description Units Min Max
mdHandle metadata group in MCF none N/A N/A
hdfAttrName HDF attribute name to contain metadata none N/A N/A
hdfFileld HDF file ID none N/A N/A
OUTPUTS: None

6-74 333-CD-004-002

RETURNS:
Table 6-29. PGS_MET_WriteReturns

Return Description
PGS_S_SUCCESS
PGSMET_E_NO_INITIALIZATION Metadata file is not initialized
PGSMET_E_ODL_MEM_ALLOC ODL routine failed to malloc memory space
PGSMET_E_GROUP_NOT_FOUND No group called <name> found in the MCF
PGSMET_E_OPEN_ERR Unable to open <temporary> file with file id <fileld>
PGSMET_E_SD_SETATTR Unable to set the HDF file attribute. Note: HDF4.0r2 and
previous versions of HDF have imposed a limit.
PGSMET_E_MALLOC_ERR Unable to allocate memory for the hdf attribute
PGSMET_E_MAND_NOT_SET Some of the mandatory parameters were not set
PGSMET_E_FGDC_ERR Note: HDF attribute is still written out. Unable to convert UTC
input date time string to FGDC values
PGSMET_E_ILLEGAL_HANDLE Handle is illegal. Check that initialization has taken place.
PGSMET_E_HDFFILENAME_ERR Unable to obtain HDF filename.
PGSMET_E_ASCII_ERR Unable to open MET ASCII file.
EXAMPLES:
C:

/* Wite to ASCII netadata file for non-HDF out put product */
ret= PGS _MET Wite(handl es[ODL_I N MEMMORY], NULL, 101);
if(ret = PGS_S_SUCCESS)

{
printf("ASCIlI Wite failed\n");
}
/* Wite to HDF file */
ret= PGS_MET Wite(handl es[| NVENTORYMETADATA], "netadata", sdid);
if(ret = PGS_S SUCCESS)
{
printf("HDFWite failed\n");
}

FORTRAN:

C Wite to ASCII file for non-HDF out put product
result= pgs_nmet_wite(groups(ODL_I N MEMORY), dumyStr, 101)
if(result.NE PGS S SUCCESS. AND. result.NE. PGSMET_MAND NOT_SET)
t hen
1 print *, "ASCIl Wite failed"
endi f

6-75 333-CD-004-002

C Wite to HDF file

1

NOTES:

result= pgs_net_wite(groups(l NVENTORYMETADATA) ,

"corenet adata", sdid)

if(result.NE PGS S SUCCESS. AND. result.NE PGSMET _MAND NOT_SET)
t hen

print * "ASCIl Wite failed"

endi f

When writing an attribute which has been defined as "UNSIGNED INT", the value
written to the ASCII or HDF file may appear negative. The user should use the type
“unsigned int” or the ECS equivalent (PGSd_uinteger) to interpret the value correctly.
(see Note 4 of PGS MET_SetAttr in Section 6.2.1.4.)

This routine can be used multiple times to write/attach separate master groups as local or
global HDF attributes. To attach a mastergroup to a local element in an HDF file, an
sds id must be passed in as an argument, rather than an sd_id(hdfFileld). ''NOTE!!! :
Attaching metadata to a local element using the Toolkit is not standard practice for HDF-
EOS files and should be avoided.

When writing the inventory metadata (MASTERGROUP = INVENTORYMETADATA
in the MCF, mdHandle = coremetadata in the function call) to an HDF file, an ASCI|I
version of the metadata is automatically created in the data product output directory. It is
given the same name as the data product output, with the extension .met, i.e.
ProductName.met. |f the data product output is not in HDF, the following lines must be
included in the PCF in order to create thisrequired .met file:

?PRODUCT QUTPUT

100]| Product Nane| my/ out put/directory||]|1

2 USER RUNTI ME PARAMETERS

101]| Product Met adat aFi | e] 100: 1
where the second field is ssimply a comment.
An ASCII version of the metadata file will be created in the execution directory with the

name ProductName.met. The user needs to call PGS _MET_Write with mdHandl€[0], the
HDF attribute name set to NULL and the identifier set to the logical identifier in the PCF.

2. If MANDATORY parameters are not set, an error
PGSMET_E_MAND_NOT_SET isreturned only in a PGE. The value of the metadata is
set to asfollows:

DATA_LOCATION VALUE
PGE "NOT SET"

6-76 333-CD-004-002

PCF "NOT FOUND"

MCF "NOT SUPPLIED"
TK “NOT OBTAINED”
DSS “NOT PROVIDED”
DAAC “NOTSUPPORTED”
DP “NOT INCLUDED”

The writing of the hdf header is not affected

NOTE: A warning PGSMET_W_METADATA_NOT_SET isissued if MANDATORY
has the value FALSE in the MCF, and the specific attribute will not appear in the HDF-
EOS attribute or the ASCI| file.

3. Only system errors such as memory failure, file openings etc. should be able to
abort the write procedure.

4, NUM_VAL and CLASS fields are written in the HDF header
For metadata of type DATETIME, additional metadata is produced:
CALENDATDATETIME becomes CALENDARDATE and TIMEOFDAY .

RANGEBEGININGDATETIME becomes RANGEBEGININGDATE and
RANGEBEGININGTIME

RANGEENDINGDATETIME becomes RANGEENDINGDATE and
RANGEENDINGTIME

The user no longer has to worry about the size of the MCF exceeding the HDF limit on
attribute sizes. Thisis now handled internally. The user smply needs to set coremetadata
(or archivemetadata) and if the limit is exceeded, coremetadata.0, .1, etc. are produced.

REQUIREMENTS: PGSTK-0290, PGSTK-0380, PGSTK-0400, PGSTK-0450, PGSTK-0510

6-77 333-CD-004-002

Free Memory of MCFs

NAME: PGS MET_Remove()
SYNOPSIS:
C #include "PGS _MET.h"

PGSt_SMF_status
PGS MET_Remove()

FORTRAN: include"PGS MET_13.f"
include"PGS MET .f"
include "PGS_SMF.h"

integer function pgs_met_remove()

DESCRIPTION: Thisroutine removes ODL representation of all MCF files and some internal files

used by the MET tools.

INPUTS: None

OUTPUTS: None

RETURNS: None

EXAMPLES:

C
result = PGS _MET_Renove();
printf("SUCCESS\n");
return O;

FORTRAN:
print *, ival, dval, datetine
result = pgs_net_renove()
print *, "SUCCESS"
end

NOTES: This routine must be called by the user before the program terminates.

REQUIREMENTS: PGSTK-0430

6-78 333-CD-004-002

6.2.1.5 Data Quality Assurance

The tools in this section will be used to support the analysis of Q/A data output from the
production processes. There is no Toolkit tool to meet this requirement, however, this
requirement is being met by other HDF functionality

REQUIREMENTS: PGSTK-0510

6.2.1.6 Temporary and Intermediate Files

This section contains descriptions of tools that are specific to temporary and intermediate file
1/0. A temporary file is a file that exists only for the duration of a single PGE; it is deleted
following successful PGE termination. An intermediate file exists for a user-defined time after
the PGE terminates.

After you open atemporary or intermediate file, use the native C or FORTRAN 1/O routines to
perform |/O.

Note that there are no “Temp_Close” tools; use the Gen_Close tools to close files. See “ Generic
Filel/O Tools’ (Section 6.2.1.3).

Special note regarding FORTRAN 90: Tools PGS 10 _Gen_OpenF and
PGS 10_Gen_Temp_OpenF now have FORTRAN 90 versions. These versions support two
specific usages of the FO0 OPEN function that are not supported in ANSI FORTRAN 77; they
do not support all F90 options of OPEN. At Toolkit installation time, you select between F77 and
F90, and the appropriate source code file is compiled; the function names are the same in both
versions of FORTRAN. Options and text that apply only to FORTRAN 90 are marked in this
document as ***F90 SPECIFIC***,

IMPORTANT CHANGESFROM TOOLKIT 4

The following environment variables MUST be set to assure proper operation:

PGS PC INFO _FILE path to process control file

However, the following environment variables are NO LONGER recognized by the Toolkit:

PGS _TEMPORARY _IO path to temporary files
PGS INTERMEDIATE_INPUT path to intermediate input files
PGS INTERMEDIATE _OUTPUT path to intermediate output files

Instead, the default paths, which were defined by these environment variables in previous
Toolkit releases, may now be specified as part of the Process Control File (PCF). Essentially,
each has been replaced by a global path statement for each of the respective subject fields within
the PCF. To define a global path statement, simply create a record that begins with the *!’
symbol defined in the first column, followed by the global path to be applied to each of the
records within that subject field. Only one such statement can be defined per subject field and it
must appear prior to any dependent subject entry.

6-79 333-CD-004-002

The status condition PGSIO_E GEN_BAD_ENVIRONMENT now indicates an error status on
the global path statement as defined in the PCF, and NOT on an environment variable. However,
as with previous releases, the status message associated with this condition may reference the
above “tokens,” but thisis only to indicate which of the global path statements is problematic.

The following environment variable is also NO LONGER recognized.
PGS HOST PATH path to internet hostsfile (e.g., /etc/hosts)

The temporary /0 tools will ook to the Process Control File (PCF) for the runtime parameter
PGSd 10 _Gen HostAddress to obtain the |P address.

6-80 333-CD-004-002

Open a Temporary/Intermediate File (C Version)

NAME:
SYNOPSIS:
C:

FORTRAN:
DESCRIPTION:

INPUTS:

PGS 10_Gen_Temp_Open()

#include <PGS 10.h>

PGSt_SMF_status

PGS 10_Gen Temp_Open(
PGSt IO _Gen Duration file_duration,
PGSt_PC Logical file_logical,
PGSt 10_Gen AccessType file access,
PGSt_IO_Gen _FileHandle** file_handle);

(not applicable)

This routine lets the user create and open Temporary and Intermediate
files with a variety of access modes. The returned argument
PGSt_IO_Gen_FileHandle is directly compatible with the standard “C”
library stream I/O manipulation routines.

file_duration:
PGSd 10 _Gen Endurance
PGSd |O_Gen_NoEndurance

Il Creates Intermediate File //
Il Creates Temporary File //

file_logical-User defined logical file identifier

file_access-type of access granted to opened file:

Table 6-30. File Access Type

Toolkit

C Description

PGSd_IO_Gen_Read

“r Open file for reading

PGSd_IO_Gen_Write

Open file for writing, truncating existing file to 0 length, or creating a new file

PGSd_IO_Gen_Append

“a” Open file for writing, appending to the end of existing file, or creating file

PGSd_IO_Gen_Update

“r+” Open file for reading and writing

PGSd_IO_Gen_Append
Update

“at+” Open file for reading and writing, to the end of existing file, or creating a new file;
whole file can be read, but writing only appended

OUTPUTS:

file_handle-used to manipulate files with other “C” library stream 1/0
routines

6-81 333-CD-004-002

RETURNS:

Table 6-31. PGS _I0_Gen_Temp_Open Returns

Return Description

PGS_S_SUCCESS

Success

PGSIO_W_GEN_ACCESS_MODIFIED lllegal attempt to open existing file for access mode

PGSd_IO_Gen_Write or PGSd_IO_Gen_Trunc; Access mode reset to
PGSd_IO_Gen_AppendUpdate

PGSIO_W_GEN_NEW_FILE File expected, but was missing; new file created
PGSIO_W_GEN_DURATION_NOMOD Attempt to alter existing intermediate duration attribute ignored
PGS_E_UNIX UNIX system error

PGSIO_E_GEN_OPENMODE Invalid access mode
PGSIO_E_GEN_REFERENCE_FAILURE Other error accessing $PGS_PC_INFO_FILE
PGSIO_E_GEN_BAD_FILE_DURATION Invalid file duration

PGSIO_E_GEN_FILE_NOEXIST No entry for file logical in $PGS_PC_INFO_FILE
PGSIO_E_GEN_CREATE_FAILURE Error creating new file entry in $PGS_PC_INFO_FILE
PGSIO_E_GEN_NO_TEMP_NAME Failed to create temporary filename
PGSIO_E_GEN_BAD_ENVIRONMENT Bad environment detected for I/O path ...

EXAMPLE:

“Existing file” means that an entry for the file exists in
$PGS_PC_INFO_FILE.

(NOTE: the above are short descriptions only; full text of messages
appears in files $SPGSMSG/*.t . Descriptions may change in future
releases depending on external ECS design.)

/1 This exanple illustrates howto create an Internedi ate
File //

PGSt _SMF_st at us returnStatus;

PGSt _PC Logi cal | ogi cal ;

PGSt _1 O Gen_Fil eHandl e *handl e;
#defi ne I NTER 1B 101

returnStatus =

PGS _| O Gen_Tenp_Open(PGSd_I O Gen_Endur ance, | NTER_1B,
PGSd_I O Gen_Wite, &andl e);

if (returnStatus != PGS _S SUCCESS)

{

got o EXCEPTI ON;
}
EXCEPTI ON:

6-82 333-CD-004-002

NOTES:

This function will support most POSIX modes of fopen; the only
exception being truncate mode (w+).

Logical identifiers used for files may NOT be duplicated.

Existing files will NOT be overwritten by calling this function in mode
PGSd _I10_Gen_Write. Instead, they will be opened in
PGSd_10_Gen_ AppendUpdate mode; a warning will be issued signifying
that thisis the case. Warnings will also be issued in the event that a non-
existent file is opened in modes other than explicit write (i.e.,
PGSd 10 _Gen_Append, or PGSd 10 _Gen_ AppendUpdate).

By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this
Temporary file prior to PGE termination, it will be purged by the Science
Data Processing Segment (SDPS) system during normal cleanup
operations. If the user requires a more static instance of afile, one that will
exist beyond normal PGE termination, that user may elect to create an
Intermediate file instead by specifying some persistence value (currently,
PGSd_10_Gen_Endurance is the only value recognized); note that this
value is only valid for the initial creation of afile and will not be applied
to subsequent accesses of the samefile.

The following table gives proper use of the file_duration input variable:

Table 6-32. Proper Use of Persistence Values

File Type & Access | Duration Factors

TEMPORARY

Creation PGSd_IO_Gen_NoEndurance

Repeated Access NULL

INTERMEDIATE

Creation PGSd_IO_Gen_Endurance

Repeated Access NULL

FILE CHARACTERISTICS
All files created by this function have names of the following form:
[1abel][production-run-id][local-network-I P-address] [process-id][date] [time]
asin:

‘“perrrrrrrrvvvwwxppppppdddyyhhnmss’

6-83

333-CD-004-002

Table 6-33. Temporary File Name Definition

Field Description Format
label SDP Toolkit Process Control “pc”
production-run-id numeric identifier from 1 to 8 places rrrrrrrr
local-network-IP-address local portion of Internet protocol (IP) address VVVWAWX X

UUU.VVV.WW.XX

process-id UNIX identifier for current process pppppp
date # days from beginning of year, and the year dddyy
time time from midnight local time hhmss

ex. pc1150283201028000395104034

pc 1 1502832 010280 00395 104034
| abel |] | |
prod.-run-id_| |

process-id
dat e
tinme

I

I I

| ocal -1 P-address_| | |
I I

I

All temporary and intermediate files generated by this tool are unique within a certain network
locale (e.g., DAAC). Also, al file names are a maximum of 34 characters
in length.

NOTE: Users should NOT put entries in the TEMP or INTERMEDIATE OUTPUT sections.
The Toolkit will do this.

REQUIREMENTS: PGSTK-0530, PGSTK-0531

6-84 333-CD-004-002

Open a Temporary/Intermediate File (FORTRAN Version)

NAME:
SYNOPSIS:
C:
FORTRAN:

DESCRIPTION:

INPUTS:

PGS IO_Gen_Temp_OpenF()

(not applicable)

INCLUDE ‘PGS SMF.f
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS _|O.f

INCLUDE ‘PGS |0 _1f

integer function pgs_io_gen temp_openf(file_duration, file_logical,
file_access, record _length, file_handle)

integer file_duration

integer file logica

integer file_access

integer record_length

integer file_handle

Upon a successful call, this function will return alogical unit number for
use with FORTRAN READ and WRITE statements. This is returned to
the user via the parameter file_handle. The user provides the logical file
identifier that internally gets mapped to the associated physical file. The
user also provides the file duration parameter, to specify whether the file
being opened is to be temporary or intermediate.

file_duration-specifies how long file will last:

Table 6-34. File Duration

PGS-defined value Description
PGSd_IO_Gen_Endurance intermediate file
PGSd _I0_Gen_NoEndurance temporary file

file_logical-User defined logical file identifier

file_access-type of access granted to opened file:

6-85 333-CD-004-002

Table 6-35. File Access Type

FORTRAN 77/90 FORTRAN 77/90
PGS FORTRAN Access Mode Rd/Wr/Update/Append ‘access=’ ‘form=’

PGSd_IO_Gen_RSeqgFrm Read Sequential Formatted
PGSd_IO_Gen_RSequUnf Read Sequential Unformatted
PGSd_IO_Gen_RDirFrm Read Direct Formatted
PGSd_IO_Gen_RDirUnf Read Direct Unformatted
PGSd_IO_Gen_WSeqFrm Write Sequential Formatted
PGSd_IO_Gen_WSeqUnf Write Sequential Unformatted
PGSd_IO_Gen_WDirFrm Write Direct Formatted
PGSd_IO_Gen_WDirUnf Write Direct Unformatted
PGSd_IO_Gen_USegFrm Update Sequential Formatted
PGSd_IO_Gen_USeqUnf Update Sequential Unformatted
PGSd_IO_Gen_UDirFrm Update Direct Formatted
PGSd_IO_Gen_UDirUnf Update Direct Unformatted
£90 SPECIFIC

PGSd_IO_Gen_ASeqFrm Append Sequential Formatted
PGSd_IO_Gen_ASeqUnf Append Sequential Unformatted

record_length-record length for direct access | O:
mandatory for direct access (minimum value = 1)

ignored otherwise

F90 SPECIFIC must be greater than or equal to O for sequential
access, if O, file is opened with default record length

OUTPUTS:
RETURNS:

file_handle-used to manipulate fileswith READ and WRITE

Table 6-36. PGS IO_Gen_Temp_OpenF Returns

Return

Description

PGS_S_SUCCESS

Successful completion

PGSIO_E_NO_FREE_LUN

All logical unit numbers are in use

PGSIO_W_GEN_ACCESS_MODIFIED

The access mode has been modifi

ed

PGSIO_E_GEN_OPENMODE

lllegal open mode was specified

PGSIO_E_GEN_OPEN_OLD

Attempt to open with STATUS=0L

D failed

PGSIO_E_GEN_OPEN_NEW

Attempt to open with STATUS=NE

W failed

PGSIO_E_GEN_OPEN_RECL

Invalid record length specified

PGSIO_W_GEN_OLD_FILE

File exists: changing access to update

PGSIO_W_GEN_NEW_FILE

File not found, created new one

PGSIO_W_GEN_DURATION_NOMOD

lllegal attempt to modify file duration

PGSIO_E_GEN_REFERENCE_FAILURE

Can'’t do Temporary file reference

PGSIO_E_GEN_BAD_FILE_DURATION

lllegal file duration value

PGSIO_E_GEN_FILE_NOEXIST

File not found, cannot create

PGSIO_E_GEN_CREATE_FAILURE

Unable to create new file

PGSIO_E_GEN_NO_TEMP_NAME

New name could not be generated

6-86

333-CD-004-002

EXAMPLE:

nt eger returnstatus
nteger file_duration
nteger file_ |l ogica
nteger file_access
nteger record_l ength
nteger file_handle

file_duration
file_logical= 101
file_access PGSd_| O Gen_WDi r Unf
record_|l ength =1

PGSd_I O _Gen_NoEndur ance

returnstatus = PGS_| O Gen_Tenp_OpenF(file_duration
file_l ogical
file_ access,
record_| engt h,
file_handl e)

if (returnstatus .NE. PGS_S SUCCESS) then

C goto 1000
endi f

100 <error handling goes here>

NOTES:

Logical identifiers used for Temporary and Intermediate filesmay NOT be
duplicated. Existing fileswill NOT be overwritten by calling this function
in any of the write modes. Instead, they will be opened in the
corresponding update mode; a warning will be issued signifying that this
isthe case. Warnings will also be issued in the event that a nonexistent file
is opened in modes other than explicit write.

By using this tool, the user understands that a Temporary file may only
exist for the duration of a PGE. Whether or not the user deletes this file
prior to PGE termination, it will be purged by the PGS system during
normal cleanup operations. If the user requires a more static instance of a
file, one that will exist beyond normal PGE termination, that user may
elect to create an Intermediate file instead by specifying some persistence
value (currently, PGSd_10_Gen_Endurance is the only value recognized);
note that this value is only valid for the initial creation of a file and will
not be applied to subsequent accesses of the samefile.

In order to insure that generated temporary file names are unique for the
same host, a delay factor of 1 millisecond is imposed during the name
creation process.

6-87 333-CD-004-002

Due to the nature of FORTRAN 10, it is possible to write afile opened for
reading as well as read a file opened for writing. The matching of access
mode to 10 statement cannot be enforced by the tool. This is up to the
user.

Once afile has been opened with this tool, it must be closed with a call to
PGS 10_Gen_CloseF before being re-opened. Failure to do thiswill result
in undefined behavior.

REQUIREMENTS: PGSTK-0530, PGSTK-0531

6-88 333-CD-004-002

Delete a Temporary File

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

EXAMPLE:

PGS 10_Gen_Temp_Delete()

#include <PGS 10.h>

PGSt SMF_status
PGS 10_Gen Temp_Delete(
PGSt PC Logica file logical);

INCLUDE ‘PGS SMF.f
INCLUDE ‘PGS PC 9.f
INCLUDE ‘PGS |0 _1f

integer pgs_io_gen_temp_delete(
integer file logical)

Upon a successful call, this function will “effectively” delete the
Temporary file currently referenced by the specified logical identifier.
(See NOTES.) Future references to this logical identifier will no longer
provide access to a file until such time as a new temporary file is created
with the same logical identifier.

file_logical-User defined logical file identifier
None

PGS S SUCCESS
PGSIO_E_GEN_REFERENCE_FAILURE
PGSIO_E GEN_FILE_NODEL

PGSIO_ W_GEN_FILE NOT_FOUND

PGSt _SMF st at us ret _val;

PGSt _PC Logi cal | ogi cal ;

#def i ne | NTER_1B 101

ret_val = PGS_| O Gen_Tenp_Del ete(I NTER 1B);
if (ret_val != PGS_S SUCCESS)

{
got o EXCEPTI ON;

}

EXCEPTI ON:

6-89 333-CD-004-002

NOTES: The actual deletion of Temporary files is not carried-out until after the
completion of the PGE run. Instead, these files are marked as deleted
through the Process Control mechanism. This allows for the preservation
of all Temporary files generated during a PGE run, to facilitate error
tracking/debugging following a failed run of a PGE. This in no way
prevents the creation of a new temporary file using the same logical
identifier as one previously deleted.

Unlike al other 10_Gen tools, this function has a FORTRAN binding
to C. There is no separate FORTRAN version.

Logical identifiers used for Temporary and Intermediate files may NOT be
duplicated.

By using this tool, the user understands that a truly Temporary file may
only exist for the duration of a PGE. Whether or not the user deletes this
file prior to PGE termination, it will be purged by the Science Data
Processing System (SDPS) system during normal cleanup operations.

REQUIREMENTS: PGSTK-0520

6-90 333-CD-004-002

6.2.2 Error/Status Reporting (SMF Tools)

To detect and report on error and status conditions in a consistent manner across the ECS,
standardized status messages and status codes must first be established. The method used to
institute these message/code pairsis by way of the ‘smfcompile’ utility. But first, users will need
to create Status Message Files (SMFs) to contain their custom status messages and
corresponding status identifiers. These identifiers take the form of user defined mnemonics that
visually convey the essence of the status message. The user will make direct use of these
mnemonics in their software when testing for status conditions and when interfacing with the
SMF Toolkit functions. Once an SMF is completed, the smfcompile utility is runin order to bind
the status messages and mnemonics with integral status codes. This process facilitates the
runtime access of all status messages and provides for the referencing of status mnemonics
within the user’s code.

The status codes generated by the ‘smfcompile’ utility are guaranteed to be unique across the
entire SDPS system to ensure that there will be no ambiguous status conditions, in the event that
code from different Science Computing Facilities (SCFs) is merged into a single executable
and/or PGE. This unigueness is possible because “seed” values, which are different for every
SMF, are used in the generation of the status codes. Typically, many SMF fileswill be created in
the course of software development; therefore many seed numbers will be required. However, it
is important to note that valid seed numbers can only be obtained from the Toolkit development
team (pgstlkit@eos.hitc.com). Any attempt to produce SMFs from “home-grown” seed values
may result in the SMFs being unusable at integration & test time.

The SDP Toolkit routines actually contain their own collection of status codes and associated
status messages for describing the state of each Toolkit function. Users of the Toolkit functions
should examine the return values of each tool before performing any other action. To inform a
calling unit (user’s software) about the exit state of a called Toolkit routine, each Toolkit
function sets a status message and assigns a status code to the return value. On the basis of its
interpretation of this return value, the calling unit may elect to perform some error handling. As
part of this procedure, the user should either propagate the existing status code up through their
calling hierarchy, or set a status code and message to represent the outcome of any local error
handling attempt.

Upon detection of an error state, users are advised to report on the existing error prior to
performing an error handling procedure. The content of these reports might include the
following: a user-defined message string to convey the nature of the status condition, a user-
defined action string to indicate the next operation to be performed in response to the status
condition, and a system defined string that uniquely identifies the environment in which the
status condition occurred. However, this is merely a suggestion; the user is free to define the
content of the status reports to satisfy their own requirements. The method for reporting this
information will involve the generation of a report from the information just described and the
subsequent transmission of that report to the appropriate destination(s).

Once software development has been completed, all the Status Message Files (SMFs) created to
support that development will be delivered to the DAAC along with the developed PGE(s). The

6-91 333-CD-004-002

Toolkit SMFs will be delivered to the DAACs aong with the Toolkit library, just as they were
delivered to the SCFs.

The tools provided here allow for the propagation of status information within a PGE executable
to facilitate a user’s error handling process. They also provide the means to communicate status
and error information to various monitoring authorities and event logs. Additionally, there is a
tool that enables the user to specify, a priori, the action to be taken in the wake of a fatal
arithmetic event. This mechanism will allow the user to take their own corrective measures to
control an event that is terminal by default. Note that all other event conditions fall under the
purview of system processing and are thereby controlled by the governing SDPS software.

Several new features have been incorporated into these tools for Toolkit 5 in order to improve
their efficiency. One of those features allows for the buffering of individual status messages up
to some user defined runtime limit. This should greatly reduce the amount of 1/0 required to
access these messages. As a process proceeds to completion, new status messages are buffered as
older, less used status messages become unbuffered. The goal here is to only access status
messages from their runtime file when they are being referenced for the first time. The actual
observed improvement will depend on the degree to which a process status messages are
localized (i.e., A particular status message should ideally only be referenced within a short body
of code.) and the buffer size, which is set by the user. Another feature reduces the number of
replicated status messages that can appear in the status log file. This is accomplished by
“compressing” duplicate messages into a count of such messages. This feature should
significantly reduce the size of the status log file and contribute to its general readability.

Please refer to Appendix B for guidance on the creation of Status Message Files and for
examples of SMFs and explicit SMF Toolkit usage.
6.2.2.1 Log File Output Control

Several new features have been added to the Toolkit to allow greater control of message logging.
The behavior of these features is controlled via entries in the Process Control File (PCF). Note
that the use of some or all of these features may be strictly controlled at the DAACs.

6.2.2.1.1 Logging Control

PCF entry:
10114]L ogging Control; O=disable logging, 1=enable logging|1

This may be used to disable logging atogether. If logging is disabled NO message will output to
any log files (although a small header will still be written to the log files indicating that for this
PGE logging has been disabled). The default state is for logging to be enabled.

6.2.2.1.2 Trace Control

PCF entry:
10115|Trace Control; 0=no trace, 1=error trace, 2=full trace|0

6-92 333-CD-004-002

This may be used to specify the trace level for message logging. Tracing is a feature made
possible by the addition of two new SMF tools: PGS _SMF_Begin and PGS_SMF_End (see the
respective entries in 6.2.2.2 Status Reporting Tools). Users may include these tools at the
beginning and ending of their functions (respectively) to signal to the SMF system when each
user defined function is entered and exited. Three levels of tracing are possible:

No Tracing

Thisisthe default state. No information concerning the entering or exiting of functionsis
recorded to the log files. No information concerning the path of afunction call isrecorded to the
log files.

Example Log Entry:
func4():PGSTD_W_PRED_ LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

Error Tracing

If error tracing is enabled, information concerning the path of afunction call is recorded to the
log files any time a status message islogged to alog file. Thisis useful in determining wherein a
chain of function calls an error occurred. No information concerning the entering or exiting of
functionsisrecorded in this state.

Example Log Entry:
main():
funcl():
func2():
func3():
func4():PGSTD_W_PRED_LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

Full Tracing

If full tracing is enabled, a message will be written to the log files each time afunction is entered
and exited (only those user functions with the PGS_SMF_Begin/End calls, see above). Indenting
will also be done to show the path of each function call.

Example Log Entry:
PGS _SMF_Begin: main()
PGS _SMF_Begin: funcl()
PGS_SMF_Begin: func2()
PGS SMF_Begin: func3()
PGS _SMF_Begin: func4()

func4():PGSTD_W_PRED_LEAPS:27652
predicted value of TAI-UTC used (actual value unavailable)

PGS_SMF_End: func4()

6-93 333-CD-004-002

PGS _SMF_End: func3()
PGS _SMF_End: func2()
PGS_SMF_End: funcl()
PGS _SMF_End: main()

6.2.2.1.3 Process ID Logging

PCF entry:
10116|Process ID logging; O=don’'t log PID, 1=log PID|0

This may be used to enable the tagging of log file entries with the process ID of the process from
which the entry came. This is useful for PGEs that run concurrent processes which will all be
writing to a single log file simultaneoudly. If process ID logging is enabled, each log entry will
be tagged with the process ID of the process making the entry. This can facilitate in post-
processing alog file.

Example Log Entry:
func4():PGSTD_W_PRED_L EAPS:27652 (PID=2710)
predicted value of TAI-UTC used (actual value unavailable)

6.2.2.1.4 Status Level Control

PCF entry:
10117|Disabled status level list (e.g., W S F)|<status level list>

This may be used to disable the logging of status codes of specific severity levels. A list of levels
to be disabled should be substituted for <status level list> (e.g.: N M U). No message of a status
level indicated in the list will be recorded to any log file (see Appendix B for details on status
message levels). The default state is to enable logging for all status levels.

6.2.2.1.5 Status Message Seed Control

PCF entry:
10118|Disabled seed list|<status code seed list>

This may be used to disable the logging of status codes generated from specific seed values. A
list of seed values, the status codes derived from which should be disabled, should be substituted
for <status code seed list> (e.g.: 3 5). No message derived from a seed value indicated in the list
will be recorded to any log file (see Appendix B for details on status message seed values). The
default state isto enable logging for all seed values.

6.2.2.1.6 Individual Status Code Control

PCF entry:
10119|Disabled status code list|<status code list>

6-94 333-CD-004-002

This may be used to disable the logging of specific status codes. A list of status code mnemonics
and/or numeric status codes should be substituted for <status code list> (e.g.:
PGSTD_M_ASCII_TIME_FMT_B 678954). Note that only Toolkit status codes can be
disabled by using mnemonics. To disable a user generated status code a numeric status code
must be used. No messages whose status codes or mnemonics are included in the list will be
recorded to any log file. The default state isto enable logging for all status codes.

6.2.2.1.7 Generating Runtime E-Mail Messages

A PGE may be configured to automatically generate and send e-mail message during runtime
when specific user defined status codes are logged. Thisis done by assigning an e-mail action to
agiven user defined status code.

An e-mail action isan SMF code with the special status level of “C” and a mnemonic that begins
with the characters “PGSEMAIL” (the rest of the mnemonic may contain any other valid
mnemonic characters), for example:

PGS_C_PGSEMAIL_SEND_EMAIL
ASTER_C_PGSEMAIL_ALERT
MODIS_C_PGSEMAIL_ERROR

An e-mail message will be generated anytime a user defined status code with an associated e-
mail action is logged via the SMF logging routines. The contents (body) of these messages will
be the text (message) associated with the user defined status code. The subject of these messages
will be the mnemonic associated with the user defined status code. The list of recipients is
defined in the e-mail action definition.

Example:

In a user defined status message file the following status code mnemonic label and e-mail action
mnemonic label have been defined (the e-mail action is associated with the status code via the
“17 syntax):

MODIS E PGEINNT FAILED The PGE failed to initialize.
:: MODI S_C _PGSEMAI L_NOTI FY
MODI S C PGSEMAI L_NOTI FY john@mdi s. org, sue@mwdis.org

The following lines appear in a C source codefile:

returnStatus = initializePGE();

if (returnStatus == MODIS E PGE | NI T_FAI LED)

{
PGS_SMF_Set Stati cMsg(returnStatus, “min()”);
exit(l);

}

At runtime, if the returned status code from the function initializePGE() has the value defined by
MODIS E PGE_INIT_FAILED, this statusislogged viathe SMF function

6-95 333-CD-004-002

PGS SMF_SetStaticM sg(), and because this status code has an e-mail action associated with it,
an e-mail message will be generated.

The e-mail message will be sent to: sue@modis.org and john@modis.org
The subject field of the e-mail message will be: MODIS_E_PGE_INIT_FAILED
The text of the e-mail message will be: The PGE failed to initialize.

Note:
This functionality will be disabled at the DAACS.

6-96 333-CD-004-002

6.2.2.2 Status Reporting Tools

Get Toolkit Version

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:
EXAMPLES:
C:

FORTRAN:

NOTES:

REQUIREMENTS:

PGS SMF_GetToolkitVersion()

#include <PGS_SMF.h>
void

PGS_SMF_GetToolkitVersion(
char version[21]);

include' PGS_SMF-.f’

integer function pgs_smf_gettoolkitversion(
character* 20 version)

This function returns a string describing the current version of the Toolkit.
None

version - character string describing the current version of the Toolkit

None

char version[21];
PGS_SMF_GetToolkitVersion(version);

character*20
call pgs_smf_gettoolkitversion(version)

User must allocate enough memory to hold the Toolkit version string.This
function does not allocate any memory for the user.

6-97 333-CD-004-002

Set UNIX Status Message

NAME: PGS SMF_SetUNIXMsg()
SYNOPSIS:
C #include <PGS_SMF.h>
PGSt_SMF_status
PGS SMF_SetUNIXMsy(
PGSt_integer unix_errcode,
char *msg,
char *funcname);
FORTRAN: include' PGS_SMF.f’
integer function pgs_smf_setunixmsg(unix_errcode,msg,funcname)
integer unix_errcode
character* 240 msg
character* 32 funcname
DESCRIPTION: This tool provides the means to retain UNIX error messages for later
retrieval. Additionally, the user has the flexibility to append a user defined
message to a UNIX message for further clarity.
INPUTS: unix_errcode-the error code set by C library; UNIX system calls; and
POSIX FORTRAN calls, i.e., the value stored in C *errno’ and
Fortune ‘[ERROR’
msg-user defined status message string
funcname-function where the status condition occurred
OUTPUTS: None
RETURNS:
Table 6-37. PGS_SMF_SetUNIXMsg Returns
Return Description
PGS_S SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files
PGSSMF_E_UNDEFINED_UNIXERRNO Undefined UNIX error
PGSSMF_E_MSG_TOOLONG Message length exceeded

6-98 333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

This example uses the ‘ popen()’ C library routine merely to illustrate how
the SMF tool PGS _SMF_SetUNIXMsg() might be used to preserve the
UNIX error condition. Note that ‘popen()’ is not part of the POSIX
standard and therefore should not be used within the science software.

PGSt SM- status Get Listing()

{
FI LE *stream
char buffer[101];
char directoryEntry[101];
PGSt _SMF_statusreturnStatus = PGS_S SUCCESS;
if (stream = popen(“ls”,”r”) !'= NULL)
{
whil e (fgets(buffer, 100, strean) != NULL)
{
scanf (buffer,” %", directoryEntry);
}
}
el se
{
PGS_SMF_Set UNI XMsg(errno, NULL, "Get _Listing()”);
pcl ose(stream;
returnStatus = PGS_E UNI X;
}
}

inmplicit none

i nt eger pgs_snf _set uni xnsg
character*1 chr
i nt eger ierror

PXFFGETC(| PXFCONST(“ STDI N_UNI T"), chr,ierror)
IF (ierror .NE. 0) THEN

pgs_snf _Set uni xnsg(i error,’ PXFFGETC() error
occured’,’ Get _Listing()’)
ENDI F

The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.
Likewise, the parameter “msg” can be NULL unless you wish to have an

6-99 333-CD-004-002

additional message appended to the system defined UNIX message. The
static variable ‘errno’ has been declared in ‘PGS_SMF.h'. Since UNIX
treats errno as a static parameter, the user will have to save the value
returned from the critical call unless the «call to
‘PGS _SMF_SetUNIXMsg()’ is made immediately. If unix_errno is not a
valid constant, the static buffer will be updated with the appropriate error
message.

This tool is primarily intended for users of the C programming language.
However, we believe that this functionality will support users of the
POSIX FORTRAN language as well. Please refer to POSIX FORTRAN
77 |EEE Std 1003.9-1992 on page 14, Section 2.4 (Error Numbers) for
information regarding POSIX FORTRANOs implementation of standard
error return values.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0632, PGSTK-0650

6-100 333-CD-004-002

Set Static Status Message

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

PGS SMF_SetStaticM sg()

#include <PGS_SMF.h>

PGSt SMF_status
PGS _SMF_SetStaticM sg(
PGSt SMF_code code,
char *funcname);

include' PGS _SMF-.f’

integer function pgs_smf_setstaticmsg(code,funcname)
integer code
character*32 funcname

This tool will provide the means to set a pre-defined error/status message
in response to the outcome of some segment of processing.

code-mnemonic error/status code generated by message compiler (see
“smfcompile™)

funcname-function where the status condition occurred

None

Table 6-38. PGS_SMF_SetStaticMsg Returns

Return Description

PGS_S_SUCCESS

Success

PGS_E_UNIX

UNIX error message

PGSSMF_E_LOGFILE

Error opening status, report or user files

PGSSMF_E_UNDEFINED_CODE Undefined code
EXAMPLES:
C. PGSt _SMF _status returnStatus;
returnStatus =
PGS_SMF_Set St at i cMsg(PGSSMF_E_UNDEFI NED_UNI XERROR,
“My_Function()”);
FORTRAN: implicit none

i nt eger returnstatus
i nt eger pgs_snf_setstaticMsg

6-101 333-CD-004-002

returnstatus =
pgs_snf_setstati cMsg(PGSSMF_E_UNDEFI NED_UNI XERROR,
“my_function()’)

NOTES: The parameter “funcname” can be passed in as NULL if you do not wish
to record that routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

6-102 333-CD-004-002

Set Dynamic Status Message

NAME: PGS SMF_SetDynamicM sg()
SYNOPSIS:
C #include <PGS_SMF.h>

PGSt SMF_status
PGS _SMF_SetDynamicM sg(
PGSt SMF_code code,

char *msg,
char *funcname);
FORTRAN: include' PGS _SMF-.f’

integer function pgs_smf_setdynamicmsg(code,msg,funcname)
integer code
character* 240 msg
character*32 funcname

DESCRIPTION: Thistool will provide the means to set a runtime specific status message,
for a particular status code, in response to the outcome of come segment of
processing.

INPUTS: code-mnemonic eror/status code generated by message compiler
msg-message string to be saved into the static buffer

funcname-function where the status condition occurred

OUTPUTS: None
RETURNS:
Table 6-39. PGS _SMF _SetDynamicMsg Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_LOGFILE Error opening status, report or user files
EXAMPLES:
C. Having defined a mnemonic code in the SMF file:

I NSTR_E BAD CALI BRATI ON Cal i bration val ue %. 2f
is not within tol erance

6-103 333-CD-004-002

We would like to insert the calibration factor into the message template
during processing, since the value is not fixed prior to runtime. The
message that would be set in the status buffer would then appear
as.

‘“Calibration value 356.23 is not within tol erance’

PGSt _SMF_st at us returnStatus;

PGSt _SMF_code code;

char msg[PGS_SMF_MAX_MSG_SI ZE] ;
char buf [PGS_SMF_MAX_MSGBUF_SI ZE] ;
fl oat calibration_factor = 356.23;

calibration_factor = Get_Instrument_Calibration(N GHT);
[# val ue of 356.23 returned #/

returnStatus =
PGS_SMF_GCet MsgByCode(| NSTR_E_BAD_CALI BRATI ON, nsg) ;
sprintf(buf, msg, calibration_factor);

PGS _SMF_Set Dynam cMsg(| NSTR_E BAD CALI BRATI ON, buf, Level 1A Initialization()")

FORTRAN:

Having defined a mnemonic code in the SMF file:

I NSTR_E BAD CALI BRATI ON Cal i bration value is not
within tol erance ->

We would like to insert the calibration factor to the end of the message
template during processing, since the value is not fixed prior to runtime.
The message that would be set in the status buffer would then appear as:

“Calibration value is not within tol erance -> 356. 23’

inmplicit none

i nt eger pgs_snf _get nsgbycode
i nt eger pgs_snf_setdynam cnsg
i nt eger returnstatus

char act er *240 nsg

char act er*480 buf

real calibration_factor

i nt eger nsgl en

character*8 coeff _str

calibration factor = get_instrument_calibration(N GHT)

C value of 356.23 returned

returnstatus = pgs_snf_get nsgbycode(
| NSTR_E_BAD_CODE, Q)

6-104 333-CD-004-002

NOTES:

wite(coeff _str,”(F7.2)") calibration_factor
msgl en = len(nsQ)
buf = msg(1l: msglen)//coeff_str

pgs_snf_setdynam cnsg(| NSTR_E BAD CALI BRATI ON, buf,
‘level 1A initialization);

Note that you can have the flexibility of associating any dynamic message
string to the defined mnemonic code viathis routine.

This tool can be used in various situations. For instance the user might
want to concatenate some message strings together and assign the resultant
string to an existing mnemonic code, so that this message can be passed
forward to another module for further processing. Alternatively it can be
used to embed runtime variables in the defined message template before
saving this message string to the static message buffer.

The parameter “funcname” can be passed in as NULL if you do not wish
to record the routine that noted this error. However, it is strongly
recommended that you pass the routine name for tracking purposes.

The parameter “msg” can be passed in as NULL. If you do, no message is
associated with the mnemonic code.

Refer to utility “smfcompile” for additional information on the format of
the message compiler.

REQUIREMENTS: PGSTK-0582, PGSTK-0600, PGSTK-0650

6-105 333-CD-004-002

Get Status Message by Code

NAME: PGS SMF_GetMsgByCode()
SYNOPSIS:
C #include <PGS_SMF.h>

PGSt SMF_status

PGS SMF_GetMsgByCode(
PGSt SMF_code code,
char msg[]);

FORTRAN: include' PGS_SMF.f’

integer function pgs_smf_getmsgbycode(code, msg)
integer code
character* 240 msg

DESCRIPTION: This tool will provide the means to retrieve the message string that is
associated with a specific status code in the Status Message Files.

INPUTS: code-mnemonic error/status code generated by message compiler
OUTPUTS: msg-user pre-defined message string
RETURNS:
Table 6-40. PGS_SMF_GetMsgByCode Returns;
Return Description

PGS_S SUCCESS Success

PGS_E_UNIX UNIX error

PGSSMF_E_UNDEFINED_CODE | Undefined code

EXAMPLES: See example for PGS_SMF_SetDynamicMsg().

NOTES: Thistool provides a simple Status Message File (SMF) lookup function. It
should be used primarily for retrieving messages that contain C-style
formatting tokens to facilitate the replacement of those tokens with
runtime data.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

6-106 333-CD-004-002

Get Status Message

NAME:
SYNOPSIS
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:

RETURNS:
EXAMPLES:
NOTES:

PGS SMF_GetMsy()

#include <PGS_SMF.h>

void
PGS SMF_GetMsy(
PGSt SMF_code *code,

char mnemonicf],
char msg]);

call pgs_smf_getmsg(code,mnemonic,msg)
integer code
character* 32 mnemonic

character*480 msg

This tool will provide the means to retrieve status information from the
static buffer, for use when reporting on specific status conditions.

None

mnemonic-previously set mnemonic error/status string
msg-previously set message string

None

See example for PGS_SMF_SetDynamicMsg().

Until a call is made which sets status information into the buffer, none
exists. Therefore, first time calls to this function may return the following
for each of the arguments. code=0, mnemonic="", and msg="".

A cal to any of the PGS SMF_Set*() functions will load status
information into the static buffer. To ensure that the caller of your function
can receive the intended information, calls to the PGS _SMF_Set*()
functions should be performed just prior to returning control back to the
caler.

To ensure that the status information received pertains to the status
condition set during the last function call, it is imperative that the user
invoke this function immediately upon gaining control back from the
function that set the status information.

REQUIREMENTS: PGSTK-0580, PGSTK-0650

6-107 333-CD-004-002

Get Action Message by Code

NAME: PGS SMF_GetActionByCode()
SYNOPSIS:
C #include <PGS_SMF.h>

PGSt_SMF_status

PGS SMF_GetActionByCode(
PGSt SMF_code code,
char action[]);

FORTRAN: include ‘PGS_SMF.f’

integer function pgs_smf_getactionbycode(code,action)
integer code
character* 240 action

DESCRIPTION: Thistool will provide the means to retrieve an action string corresponding
to a specific mnemonic code.

INPUTS: code-mnemonic error/status code generated by message compiler
OUTPUTS: action-associated action string

RETURNS:
Table 6-41. PGS_SMF_GetActionByCode Returns
Return Description
PGS_S SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_W_NOACTION No action defined
PGSSMF_E_UNDEFINED_CODE | Undefined code

EXAMPLES:

C: PGSt _SMF_st at us returnSt at us;
char action[PGS_SM-_MAX ACT_SI ZE] ;

returnStatus =

PGS_SMF_Get Act i onByCode(PGSSM-_E_UNDEFI NED_UNI XERROR,
action);

if (returnStatus != PGS_S SUCCESS)

{

/# could not retrieve action nessage #/

}

6-108 333-CD-004-002

el se

{
/# generate a status report and indicate action to be
taken #/
}
FORTRAN: implicit none
i nt eger pgs_snf _getacti onbycode
i nteger returnstatus
charact er*240 action

returnstatus = pgs_snf_getacti onbycode(
PGSSMF_E_UNDEFI NED_UNI XERROR, action);
IF (returnstatus .NE. PGS S SUCCESS) THEN

C could not retrieve acti on nessage
ELSE

C generate status report and indicate action to be taken
ENDI F

NOTES: This routine will not return any associated action string if the creator of
the status code did not associate an action label when creating the Status
Message File entry for that status code. If this is the case, the resulting
parameter is action[0] = ‘\0'. Refer to the available documentation for the
‘smfcompile’ utility for additional information on how to define and attach
action messages to status code entries.

REQUIREMENTS: PGSTK-0591, PGSTK-0650

6-109 333-CD-004-002

Create Message Tag

NAME: PGS SMF_CreateMsgTag()
SYNOPSIS:
C #include <PGS_SMF.h>

PGSt SMF_status
PGS SMF_CreateMsgTag(
char systemTag[]);

FORTRAN: integer function pgs_smf_createmsgtag(systemtag)
char*60 systemtag

DESCRIPTION: The tool described here allows the user to generate a runtime specific
character string that may be useful for tagging important items of data.
The string contains system defined identifiers that, when combined, can be
useful for stamping non-product specific data for system traceability.

INPUTS: None

OUTPUTS: systemTag-system defined message string
RETURNS:
Table 6-42. PGS_SMF_CreateMsgTag Returns
Return Description
PGS_S_SUCCESS Success
PGSSMF_W_NO_CONSTRUCT_TAG No information to construct message tag
PGSSMF_E_BAD_REFERENCE Bad reference
EXAMPLES:
C: char systemlag[PGSd_SMF_TAG LENGTH MAX] ;
PGSt _SMF_status returnStatus;
returnStatus = PGS_SMF_Creat eMsgTag(syst enag) ;
if (returnStatus == PGS_S SUCCESS)
{
/# create nessage tag successful #/
}
FORTRAN: implicit none
i nt eger pgs_snf _creat ensgt ag
char *60 systent ag
i nt eger returnstatus

6-110 333-CD-004-002

returnstatus = pgs_snf_creatensgtag(systentag)
IF (returnstatus .EQ PGS S SUCCESS) THEN

C create nmessage tag successful
ENDI F

NOTES: Currently, the only system identifiers used to create the message tag are:
the Science Software Configuration 1D,
and the Production Run ID.

IMPORTANT TOOLKIT NOTES

Thelogical parameter identifiers, which are implicitly defined by the PC tools, are internally
mapped to an associated physical parameter through the Process Control
mechanism. Therefore before this tool can be used, a Process Control
Table MUST be created and properly filled out. In addition, the following
environment variables must be set to ensure proper operation:

PGS _PC_INFO_FILEpath to process control file
REQUIREMENTS: PGSTK-0610

6-111 333-CD-004-002

Get Instrument Name

NAME: PGS SMF_GetInstrName()
SYNOPSIS:
C #include <PGS_SMF.h>

PGSt SMF_status

PGS SMF_GetlnstrName(
PGSt SMF_code code,
char instr[]);

FORTRAN: include' PGS_SMF.f’

integer function pgs_smf_getinstrname(code,instr)
integer code
character*10 instr

DESCRIPTION: This tool may be used to retrieve the instrument name from a given

error/status code.
INPUTS: code-mnemonic error/status code generated by message compiler
OUTPUTS: instr-corresponding instrument name as it appears in the message text
file after the token %INSTR.
RETURNS:
Table 6-43. PGS_SMF_GetinstrName Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX UNIX error
PGSSMF_E_UNDEFINED_CODE | Undefined code
EXAMPLES:
C. PGSt SMF_status returnStatus;

char instr[PGS_SM-_ MAX | NSTR_SI ZE] ;

returnStatus = PGS_SMF_Get | nstrName(MODI S_E BAD CALI BRATI ON
,instr);

if (returnStatus == PGS_S SUCCESS)

{

/# record instrunent that generated instrunent condition
#/

}

6-112 333-CD-004-002

FORTRAN:

inmplicit none

i nt eger pgs_snf _geti nstrnane
i nt eger returnst at us
character*10i nstr

returnstatus = pgs_snf_getinstrnanme(
MODI S_E_BAD_CALI BRATI ON, instr)
IF (returnstatus .EQ PGS S SUCCESS) THEN

C record instrunent which generated status condition

NOTES:

ENDI F

This function may be useful for programs which link in libraries created
by cooperating instrument teams, and where the need to distinguish the
status conditions associated with each instrument team arises.

REQUIREMENTS: PGSTK-0620, PGSTK-0650

6-113 333-CD-004-002

Generate Status Report

NAME: PGS SMF_GenerateStatusReport()
SYNOPSIS:
C #include <PGS_SMF.h>
PGSt_SMF_status
PGS _SMF_GenerateStatusReport(
char *report);
FORTRAN: include' PGS_SMF.f’
integer function pgs_smf_generatestatusreport(report)
char*1024 report
DESCRIPTION: Thistool provides the method for the user to create status reports for use
by Science Computing Facility personnel. Each call to this procedure
causes the user defined report to be appended to the status report |og.
INPUTS: report-user report generated text
OUTPUTS: None
RETURNS:
Table 6-44. PGS _SMF _GenerateStatusReport Returns
Return Description
PGS_S_SUCCESS Success
PGSSMF_E_LOGFILE Error opening status, report or user files
EXAMPLES:
C. PGSt _SMF _status returnStatus;
returnStatus = PGS_SMF _Generat eSt at usReport (“Wite it into
status report file”);
if (returnStatus == PGS_S SUCCESS)
{
/# wite to status report successful #/
}
FORTRAN: inmplicit none

i nteger pgs_snf _cgener at est at usreport
i nt eger returnStatus

6-114 333-CD-004-002

returnStatus = pgs_snf_cgeneratestatusreport(“Wite it into
status report file”)
IF (returnStatus .EQ PGS S SUCCESS) THEN

C wite to status report successful
ENDI F

NOTES: The system defined message tag will automatically be added to the user-
provided report.

IMPORTANT TOOLKIT NOTES

Thelogical fileidentifier (PGSd_SMF_LOGICAL_LOGSTATUS), which
is implicitly used by this tool, is internally mapped to an associated
physical file through the Process Control mechanism. Therefore before
this tool can be used, a Process Control Table MUST be created and
properly filled out. In addition, the following environment variables must
be set to ensure proper operation:

Table 6-45. Environment Variables
Variable Path
PGS _PC_INFO_FILE path to process control file

REQUIREMENTS: PGSTK-0650

6-115 333-CD-004-002

Send Runtime Data

NAME: PGS SMF_SendRuntimeData()
SYNOPSIS:
C #include <PGS_SMF.h>
PGSt SMF_status
PGS SMF_SendRuntimeData(
PGSt_integer numfiles,
PGSt _integer fileq[])
PGSt _integer version[];
FORTRAN: include ‘PGS _SMF-.f’
integer function pgs_smf_sendruntimedata(numfiles,files,version)
integer numfiles
integer files(*)
integer version(*)
DESCRIPTION: This tool provides the user with a method for flagging specific runtime
data files for subsequent post-processing retrieval.
INPUTS: numfiles-exact number of runtime logical file identifiers loaded into the
array ‘files
files-array of logical file identifiers which are to be preserved for later
retrieval
version-an associated array for identifying specific versions of the files
identified in the preceding array of logical identifiers
OUTPUTS: None
RETURNS:
Table 6-46. PGS _SMF_SendRuntimeData Returns
Return Description
PGS_S_SUCCESS Success
PGSSMF_E_SENDRUNTIME_DATA Send runtime file data error
PGSSMF_M_TRANSMIT_DISABLE Transmission of files is disabled
EXAMPLES:
C: ==

/# These constants may be defined in the users include
file(s). #/

6-116 333-CD-004-002

/# Note that these logical file identifiers would have to
appear #/

/# in the Process Control file in order for this call to
wor k. #/

#define MODI SIA 10

#def i ne MODI S2 20

#def i ne TEMP1 50
#def i ne TEMP2 51
#def i ne TEMP3 52

PGSt _SMF_st at us returnStat us;
PGSt _i nt eger number O Fi | es;

PGSt _i nt egerl ogl dArray|[6] ;

PGSt _i nt egerversi on[6] ;

PGSt _i nt egerversion_MODI S1A 1 = 1;

PGSt i ntegerversi on_MODI S1A 2 = 2;

PGSt _i nt egerver si on_MODI S2 =1,

PGSt _i nt eger ver si on_TEMP = 1;

| ogl dArray[0] = MODI S1A; version[0] = version_MDI S1A 1;
| ogl dArray[1] = MODI S1A; version[1] = version_MODI S1A 2;
| ogl dArray[2] = MODI S2; version[2] = version_ M S2;

| ogl dArray[3] = TEMP1; version[3] = version_TEM;
| ogl dArray[4] = TEMP2; version[4] = version_TEM;
| ogl dArray[5] = TEWMP3; version[5] = version_TEMP;

nunber & Fi | es

6,

returnStatus =
PGS_SMF_SendRunt i meDat a(nunber Of Fi | es, | ogl dArr ay, versi on);
if (returnStatus == PGS_S SUCCESS)

{
/# send runtine data success #/

}
FORTRAN:
C The foll owi ng constants may be defined in the users include file(s).
C Note that the specific logical file identifiers would have to appear
C in the process control file in order for this call to work.
inmplicit none

i nt eger pgs_snf _sendrunti medat a

i nt eger nodi sla

par anet er (nmodi sla = 10)

i nt eger nodi s2

par anet er (rmodi s2 = 20)

6-117 333-CD-004-002

i nt eger
par amet er
i nt eger
par amet er
i nt eger
par anet er

nt eger
nt eger
nt eger
nt eger
nt eger
nt eger
nt eger
nt eger

ver si on_nod
ver si on_nodi
ver si on_nod

tenpl

(templ = 50)
tenp2
(temp2 = 51)
tenp3
(temp2 = 52)

returnStatus
nunber X Fi | es

| ogl dArray(6)
ver si on(6)

versi on_nodisla 1
versi on_nodi sla 2
ver si on_nodi s2
version_tenp

sal =1
sa_ 2 =2
s2 =1

version_temp= 1

| ogl dArray(1) = nodi sla
version(1l) = version_nodisla_1
| ogl dArray(2) = nodi sla
version(2) = version_nodi sla 2
| ogl dArray(3) = nodi s2

versi on(3) = version_nodi s2

| ogl dArray(4) = tenpl

version(4) = version_tenp

| ogl dArray(5) = tenp2

ver si on(5) = version_tenp

| ogl dArray(6) = tenp3

ver si on(6) = version_tenp

number O Fi | es

6

return_status = pgs_snf_sendrunti nedat a(nunber O Fi | es, | ogl dArray, ver si on)

if (return_status .EQ PGS_S SUCCESS) then

C send runtine data success
endi f
NOTES: Repeated calls to this tool will cause previously requested files to be

superseded with the list provided during the last call.

6-118 333-CD-004-002

IMPORTANT TOOLKIT NOTES

This tool does not trigger the spontaneous transmission of runtime files
and e-mail notification, as it did in Toolkit 3. Rather, the requested files
are saved/marked for transmission following the normal termination of the
PGE process. The actual transmission procedure is performed by the
termination process (See PGS _PC_TermCom() for more information on
the steps required to perform this transmission).

Please refer to the documentation for PGS _PC_TermCom() for directions
on how to activate/deactivate the Toolkit’ s transmission capability.

REQUIREMENTS: PGSTK-0630

6-119 333-CD-004-002

Test Error Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

EXAMPLES:
C:

PGS SMF _TestErrorLevel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS _SMF_TestErrorLevel(
PGSt_SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testerrorlevel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘E’.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

PGSt _SMF_st at us returnStatus;
PGSt _SMF_bool ean | evel Fl ag;
i nt *intPtr;

returnStatus = PGS_MEM Mal | oc(& ntPtr, sizeof (i nt)*10);
| evel Flag = PGS_SMF_Test ErrorLevel (returnStatus);

if (level Fl ag

if (PGS_SMF_TestErrorLevel (returnStatus) == PGS_TRUE)
{

/# Branch to handle error condition #/

}

el se

{

| # Some other status |evel returned #/

}

6-120 333-CD-004-002

FORTRAN: implicit none

| NTEGER pgs_pc_get nunberoffil es
| NTEGER returnstatus

| NTEGER nunfil es

| NTEGER | evel flag

PARAMETER (ceres4 = 7090)

| NTEGER ceres4

returnstatus = pgs_pc_get nunberoffil es(ceres4, nunfiles)
| evel flag = pgs_snf_testerrorl evel (returnstatus)
IF (levelflag . EQ PGS _TRUE) THEN

C Branch to handl e error condition
ELSE

C Sone other status |evel returned
ENDI F

NOTES: None

REQUIREMENTS: PGSTK-0590

6-121 333-CD-004-002

Test Fatal Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

NOTES:
EXAMPLES:
NOTES:

PGS SMF _TestFatalLevel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS SMF_TestFatalLevel(
PGSt_SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testfatallevel (code)

integer code

Given the mnemonic status code, this tool will return a Boolean value

indicating whether or not the returned code has level ‘F'.

code-mnemonic error/status code generated by message compiler

None

PGS FALSE
PGS TRUE

NONE

See example for PGS_SMF_TestErrorLevel();

None

REQUIREMENTS: PGSTK-0590

6-122

333-CD-004-002

Test Message Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

NOTES:
EXAMPLES:

PGS SMF_TestMessagel evel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS _SMF_TestMessagel_evel(
PGSt SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testM essagel evel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘M’.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

None

See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

6-123 333-CD-004-002

Test Warning Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

NOTES:
EXAMPLES:

PGS SMF_TestWarningLevel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS _SMF_TestWarningLevel(
PGSt SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testwarninglevel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level ‘W'.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

None

See example for PGS_SMF_TestErrorLevel();

REQUIREMENTS: PGSTK-0590

6-124 333-CD-004-002

Test User Information Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

EXAMPLES:
NOTES:

PGS SMF_TestUserInfoLevel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS SMF_TestUserInfoLevel(
PGSt SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testuserinfolevel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level *U’.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

See example for PGS_SMF_TestErrorLevel();

None

REQUIREMENTS: PGSTK-0590

6-125 333-CD-004-002

Test Success Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

EXAMPLES:
NOTES:

PGS SMF_TestSuccessL evel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS SMF_TestSuccessL evel(
PGSt SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testsuccesslevel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level *'S'.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

See example for PGS_SMF_TestErrorLevel();

None

REQUIREMENTS: PGSTK-0590

6-126 333-CD-004-002

Test Notice Level

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:
OUTPUTS:
RETURNS:

EXAMPLES:
NOTES:

PGS SMF_TestNoticelL evel()

#include <PGS_SMF.h>

PGSt SMF_boolean
PGS SMF TestNoticel evel(
PGSt SMF_status code);

include' PGS_SMF.f’

integer function pgs_smf_testnoticelevel (code)
integer code

Given the mnemonic status code, this tool will return a Boolean value
indicating whether or not the returned code has level *N'.

code-mnemonic error/status code generated by message compiler
None

PGS FALSE
PGS TRUE

See example for PGS_SMF_TestErrorLevel();

None

REQUIREMENTS: PGSTK-0590

6-127 333-CD-004-002

Test Status Level

NAME: PGS SMF _TestStatusL evel()
SYNOPSIS:
C #include <PGS_SMF.h>
PGSt SMF_status
PGS SMF_TestStatusL evel (
PGSt SMF_status code);
FORTRAN: include' PGS_SMF.f’
integer function pgs_smf_teststatuslevel (code)
integer code
DESCRIPTION: Given the mnemonic status code, thistool will return a defined status level
constant.
INPUTS: code-mnemonic error/status code generated by message compiler
OUTPUTS: None
RETURNS:
Table 6-47. PGS_SMF_TestStatusLevel Returns
Return Description
PGS SMF_MASK LEV_S Success level status
PGS _SMF_MASK LEV_M Message level status
PGS _SMF_MASK_ LEV_U User information level status
PGS _SMF_MASK LEV_N Notice level status
PGS _SMF_MASK _LEV_W Warning level status
PGS _SMF_MASK LEV_E Error level status
PGS SMF_MASK_ LEV_F Fatal level status
PGSSMF_E_UNDEFINED_CODE | Undefined code
EXAMPLES:
C. PGSt _SMF_st at us returnStatus;

i nt *IntPtr;

returnStatus = PGS_MEM Mal | oc(& ntPtr, sizeof (i nt)*10);
swi tch(PGS_SMF_Test St at usLevel (returnStatus))

{
case PGS_SMF_NMASK LEV_S:

6-128 333-CD-004-002

/# This is a success |evel status #/
br eak;

case PGS_SMF_NMASK LEV_M
/# This is a nessage |evel status #/
br eak;

case PGS_SMF_NMASK LEV_ U
/# This is a user information | evel status #/
br eak;

case PGS_SMF_MASK_LEV_N:
/# This is a notice |level status #/
br eak;

case PGS_SMF_MASK LEV_W
/# This is a warning | evel status #/
br eak;

case PGS_SMF_NMASK LEV _E:
/# This is a error |level status #/
br eak;

case PGS_SMF_MASK_LEV_F:
/# This is a fatal |evel status #/

br eak;
defaul t:
[# Undefined status |evel #/
br eak;
}
FORTRAN: implicit none
| NTEGER pgs_pc_get nunberof fil es
| NTEGER returnstatus
| NTEGER nunfiles
| NTEGER | evel mask
PARAMETER (ceres4 = 7090)
| NTEGER ceres4

returnstatus = pgs_pc_get nunberoffil es(ceres4, nunfiles)
| evel mask = pgs_snf _teststatuslevel (returnstatus)
IF (level mask . EQ PGS _SMF_MASK LEV_S) THEN

C This is a success | evel status
ELSE IF (Il evel mask . EQ PGS SMF_MASK LEV_M THEN

C This is a nessage |evel status
ELSE I F (Il evel mask . EQ PGS _SMF_MASK LEV_U) THEN

6-129 333-CD-004-002

C This is a

C This is a

C This is a

C This is a

C This is a

C Undef i ned

NOTES:

user infornation |evel
ELSE I F (I evel mask

notice | evel status
ELSE I F (I evel mask

war ni ng | evel status
ELSE I F (I evel mask

error |evel status
ELSE I F (I evel mask

fatal |evel status
ELSE

status | evel
ENDI F

The returned level
PGS SMF MASK LEV_S having a small

st at us

. EQ

. EQ

. EQ

. EQ

PGS_SMF_MASK_LEV_N)

PGS_SMF_MASK_LEV_W

PGS_SMF_MASK_LEV_E)

PGS_SMF_MASK_LEV_F)

THEN

THEN

THEN

THEN

constants are ordered by severity with

integral value and

PGS SMF_MASK_LEV_F having the highest. This enables you to
perform conditional tests between a particular status code and one of the
provided level constants.

REQUIREMENTS: PGSTK-0590

6-130

333-CD-004-002

Begin Function

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

PGS SMF_Begin()

#include <PGS_SMF.h>

PGSt_SMF_status
PGS _SMF_Begin(
char *funcname);

include ‘PGS _SMF-.f’

integer function pgs_smf_begin(funcname)
character* 100 funcname

A call to thistool signalsto SMF that a function has started, and thus, the
current message indent level should be incremented.

Table 6-48. PGS_SMF _Begin Returns

Name Description

funcname The name of the function which calls this
routine.

OUTPUTS: NONE

RETURNS:
EXAMPLES:
C:

FORTRAN:

NOTES:

PGS S SUCCESS

PGSt _SMF_status returnStatus;

returnStatus = PGS_SMF _Begi n(“Cal |l i ngFunction”);

i nteger pgs_snf_begin
i nteger returnStatus
returnStatus = pgs_snf_begin(‘ CallingFunction’)

A message will be written to the status log file indicating that the specified
function has started.

6-131 333-CD-004-002

REQUIREMENTS: PGSTK-0580,0590,0650,0663

6-132 333-CD-004-002

End Function

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

PGS SMF_End()

#include <PGS_SMF.h>

PGSt SMF_status
PGS SMF_End(
char *funcname);

include ‘PGS _SMF.f’

integer function pgs_smf_end(funcname)
character* 100 funcname

A call to thistool signals to SMF that a function has completed, and thus,
the current message indent level should be decremented.

Table 6-49. PGS _SMF End Returns

Name Description

funcname The name of the function which calls this routine.

OUTPUTS:
RETURNS:
EXAMPLES:
C:

FORTRAN:

NOTES:

NONE
PGS_S SUCCESS

PGSt _SMF_status returnStatus;

returnStatus = PGS_SMF_End(“Cal I i ngFunction”);

inmplicit none

i nteger pgs_snf_end

i nteger returnStatus

returnStatus = pgs_snf_end(' Cal I i ngFunction’)

A message will be written to the status log file indicating that the specified
function has completed.

REQUIREMENTS: PGSTK-0580,0590,0650,0663

6-133 333-CD-004-002

Set Arithmetic Trap

We have found that thisfunction could not beimplemented in a
POSI X compliant manner across all development platforms. We note,
however, that with the exception of one platform (IBM), all machines,
by default, enable their own implementation-dependent floating-point
exception handling features. In a general sense, these features provide
the functional equivalent of the Toolkit exception handling
mechanism. See “ Investigation Results on the use of Signal Exception
Handling for ECS Approved Computing Platforms’ on the Toolkit
Primer web page for more details.

NAME: PGS SMF_SetArithmeticTrap()
SYNOPSIS:
C: #include <PGSSMF.h>

PGSt_SMF_status
PGS _SMF_SetArithmeticTrap(
void (*func)(int signo));

FORTRAN: TBD

DESCRIPTION: Thistool should be used to specify a signal handling function to be called
to handle arithmetic exception events.

INPUTS: func-signal handling function
OUTPUTS: None
RETURNS:
Table 6-50. PGS _SMF_SetArithmeticTrap Returns
Return Description

PGS_S _SUCCESS Success

PGS_E_UNIX UNIX error
EXAMPLES:
C. PGSt SMF_status returnStatus;

voi d Si gnal Handl er (i nt si gno)

{
/# algorithmto handl e SI GFPE #/

}

6-134 333-CD-004-002

FORTRAN:
NOTES:

mai n()

{
[# initialization section #/
returnStatus = PGS_SMF_Set Arit hneti cTrap(Si gnal Handl er) ;
if (returnStatus == PGS_S SUCCESS)
{
/# signal trap set successfully #/
}
el se
{
[# signal trap not set #/
exitStatus = 1;
goto EXIT;
}
/# main body #/
for (alt=5000; alt<100000; alt+500)
{
density[alt]=(GAS _CONST * tenp[alt]) / pressure[alt];
}
EXIT:
exit(existStatus);
} /# end main #/
TBD

Use NULL in place of asignal handling function to set the Toolkit default
signal handling function. This handler will force an exit from the user’s
program, which is generally more acceptable than the system’s default
action (i.e., core dump).

Upon successful completion of the user’'s signal handling function,
program control will be returned to the point where the fault occurred. As
a side-effect, the default Toolkit signal handling function will be restored
to safeguard against future occurrences of this event.

The user’s signal handling routine must accept the integer argument for
the signal number. It is not required for the user to take any action on the
value; it isstrictly for informational purposes only.

6-135 333-CD-004-002

This tool only responds to the POSIX signal SIGFPE; all other signals
need to be handled by other means.

REQUIREMENTS: PGSTK-0660

6-136 333-CD-004-002

6.2.2.3 Error and Status Message File Creation Tool

Status Message File Creation

NAME:
SYNOPSIS:

C:

FORTRAN:
ALL:

Ada
DESCRIPTION:

INPUTS:

OUTPUTS:

RETURNS:

EXAMPLES:

NOTES:

smfcompile

smfcompile -f textfile [-r] [-i]
smfcompile -f textfile -f77 [-r] [-i]
smfcompile -f textfile -al [-r] [-i]
smfcompile -f textfile -ada[-r] [-i]

This utility generates runtime status message files and language dependent
include files from user-defined status message text files.

textfile-status message text file (e.g., PGS _10_100.t)
f77-create FORTRAN includefile
al-create FORTRAN, C and Adaincludefiles

r-redirect the created ASCII runtime message file to the directory set in the
environment variable “ PGSM SG”

i-redirect the created language-specific include file to the directory set in
the environment variable “PGSINC”

Language-specific include file and ASCII runtime message file (an Ada
package specification will be produced in place of an includefile
when the *-ada’ switch is used).

1-error occurred
0O-successful operation
smfcompile -f PGS _10_100.t (produces PGS I10_100.h and PGS _100)

smfcompile -f PGS _10_100.t -f77 (produces PGS _I0_100.f and
PGS _100)

smfcompile -f PGS _10_100.t -all (produces PGS 10_100.f,
PGS _10_100.h, PGS _10_100.aand PGS _100)

The environment variable PGSMSG must be set to the local Toolkit
installation directory ‘/../pgs/message’ in order for the Toolkit to function
properly. The reason for this is that Toolkit status message files will

6-137 333-CD-004-002

REQUIREMENTS:

already reside in this directory upon completion of the Toolkit installation
procedure; these files must be visible at runtime for the Toolkit to function

properly.

If you do not specify the “-r” input parameter to the smfcompile, then
make sure that the newly created ASCII runtime message file is moved to
the directory set in the environment variable “PGSMSG”.

PGSTK-0581, PGSTK-0590, PGSTK-0591, PGSTK-0600, PGSTK-0650,
PGSTK-0664

6-138 333-CD-004-002

6.2.3 Process Control Tools

The Process Control Tools perform the task of communicating Process Control information to
the PGE. Thisinformation may consist of Production Run ID; Science Software ID; physical file
names (or Universal Reference identifiers); input file metadata/ attributes; and PGE specific
runtime parameter information. Access to this data is provided through a library APl and a
command-level interface, as described in detail below.

For Toolkit 5, an additional tool has been created which allows the user to query on the type of
file that is of current interest. This tool, PGS PC_GetReference, provides the user with the
means to determine whether afileis of type temporary or product.

Another important change for Toolkit 5 involves the removal of most Toolkit dependency
information based on environment variables. All the environment variables that define the
default location for PCF information, for each PCF section (e.g., product input), have been
replaced with section headers in the PCF. The means to provide this default information is still
there, but the method has been changed. To reduce the number of environment variables that the
user would otherwise, asin the past, be required to set.

Several new tools were added for Toolkit 4; chief among them was the product metadata
retrieval tools PGS _PC_GetFileAttr and PGS_PC_GetFileByAttr. These tools provide the means
to retrieve metadata that results from an inventory search; a search performed, by the Planning
and Data Processing subsystem, as part of the normal processing setup prior to PGE execution.
These tools should not be confused with the Metadata tools that are more specialized tools for
managing the various types of metadata (See Section 6.2.1.4). These latter tools provide for the
generation and association of product metadata whereas the former only provide for the retrieval
of product metadata. Once the definition for metadata matures and the design for managing it in
the data server becomes clearer, it may be possible to unify these tools in such a way as to
provide for the greatest degree of benefit to the user.

In addition to the above, several new tools were added in Toolkit 4 to provide command, or shell,
level access to most of the process control functionality delivered in Toolkit 3. This additional
interface will provide for a greater degree of flexibility, when developing PGEs, by allowing the
user to take advantage of standard shell level features when manipulating process control
information.

However, some of these new tools have a different objective. To provide for a more seamless
integration of the Toolkit with a PGE, a few command utilities have been incorporated which
perform Toolkit initialization and termination procedures; these steps are necessary to support
the Toolkit to its fullest extent. Since these tools are used outside of the PGE, they do not place
an additional burden on the development of a PGE. The user is however encouraged to activate
these tools whenever testing is performed. To provide for this eventuality, there is now a shell
command that provides an integrated solution for the inclusion of these tools during PGE testing.

As newer, higher-level, tools have emerged, greater has the need become to abstract away the
older, lower-level tools. To safeguard against future changes in the Toolkit API, the
PGS PC_GetPCSData and PGS PC_PutPCSData routines were removed from the User’ s Guide

6-139 333-CD-004-002

in Toolkit 4. This step is necessitated by the possibility of having to support a different Process
Control implementation for the DAAC environment. We regret any inconvenience that this
may cause.

In order for these tools to function, the actual process control information needs to be specified
in a Process Control file (PCF) prior to activation of the PGE. Each Process Control file contains
various subject fields to hold specific runtime information. All product/support/temporary file
I/O subject fields follow a similar format; the ones that differ deal with system defined and user
defined parameter information. Each subject-field entry contains a key identifier and numerous
attributes that describe the particular entry.

To support testing of a PGE, the user must create entries in a PCF to account for all file inputs,
al file outputs (except intermediate and temporary), and all parameter information that the
particular PGE depends on. The key identifiers that name each entry, also need to be represented
as logical identifiers in the PGE software. Then at runtime, the attributes for a particular entry
may be retrieved by passing a specific key identifier to the appropriate PC Toolkit function.
(Note that certain 10 Toolkit functions access the file 1/0O entries when
product/support/temporary file key identifiers are passed to them) For this reason, it would be
prudent to create a meaningful constant identifier for each key identifier in the PCF, e.g.,
TEMP1=100.

This process of defining a PCF will need to be performed for every unique instance of a PGE. At
runtime, these tools will access the particular PCF that is pointed to by the environment variable
PGS PC_INFO_FILE.

The measures outlined in the preceding paragraph must be performed to provide the minimal
level of PGS emulation required to support the Toolkit, since many Toolkit functions rely on the
Process Control mechanism for 1/0O and parameter information. The Process Control File
‘PCF.v5,” which was delivered along with the Toolkit in directory ‘$PGSHOME/runtime,’
contains all the necessary Toolkit dependencies, some of which may need to be customized for
certain Toolkit functions. To avoid PCF collisions between Toolkit and developer
dependencies, logical identifiers in the range 10,000 to 10,999 have been reserved
exclusively for Toolkit use; any other valid positive integer may be used for development
pur poses.

To mediate against any potential problems caused by an improperly constructed Process Control
File; an additional tool has been added which can be used by the developer to screen a PCF for
syntax errors and missing Toolkit dependencies. For more information on the usage of this
utility, refer to the section below for the *pccheck’ tool.

Please refer to Appendix C for guidance on the construction of Process Control Files and to
examine a sample PCF. More details and examples on the usage of the ‘ pccheck’ utility are also
included in this appendix.

6-140 333-CD-004-002

6.2.3.1 Process Control Command Tools

Toolkit Shell Script Command

NAME:
SYNOPSIS:

C:
FORTRAN:

DESCRIPTION:

INPUTS:

PGS PC_Shell.sh

PGS _PC_Shell.sh [-h] <PGE file> <Init string> <PCF location>
<SMF Cache Size> [-V] [-p]

N/A
N/A

This shell script accepts four command line arguments as input. The first
argument is the PGE to run. This may be a shell script or an executable.
The second argument is the Init string that contains 4 binary digits that
define how the Toolkit will behave. Together, these instruct the shell
about what to do in the case of using/not using shared memory or
using/not using log files. The third argument is the location of the Process
Control File (PCF). The forth argument is the SMF cache size. A fifth
argument may be used to run this script in verbose mode. A sixth
argument may be used to pass the return value of the PGE through as the
return value of the script.

PGE file-The full path/file name of the PGE to be run

Init string-The string to be passed in with the instructions about what to
do with shared memory and the log file. See NOTES section for
complete description of each field in the Init string flag.

PCF location-The full path/file name of the Process Control File (PCF)

SMF Cache Size-size of SMF message cache in records

OUTPUTS:
RETURNS:

v-Run in verbose mode. Output status messages displaying settings,
current file being run.

p-Make the return value of this script be the return value of the PGE if the
PGE isrun. If the PGE does not get run then revert to the normal method
of return values for this shell.

h-Upon receiving the -h flag a short description of the usage of
PGS _PC_Shell.sh will be provided to the user and the command will exit.

NONE

PGS S SUCCESS
PGS SH_SYS PARAM

6-141 333-CD-004-002

EXAMPLES:

NOTES:

PGS SH_ MEM_INIT
PGS SH_PC_DELETETMP

PGS SH_SMF_SENDRUNTIME
PGS SH_SMF_SENDLOGFILE
PGS SH_MEM_TERM

PGS SH_SMF_LOGFILE

PGS SH_PC_LOADDATA

PGS SH_PC_ENV

PGS SH_SMF_SHMMEM

PGS _PC_Shell.sh-h

PGS PC_Shell.sh /usr/PGE/somePGE 1111
/usr/PGE/data/lPCF.current 50 -v

PGS PC_Shell.sh /usr/home/PGE/runFile 1010
/home/PCFDATA /pcf.data 200

PGS _PC_Shell.sh /usr/PGEhome/runThis 0000
/home/Data/MY .pcf 150 -p

This shell script parses the input to ensure correctness and will report any
input problems to the user.

This shell script acts as the outer most shell for the PGE.

The Init string flag consists of four (4) fields. Each field contains a single
digit. The digits should be a one (1) or a zero (0). Therefore the Init String
would appear as “1010” or “1111", etc. For ease of use PGS_PC_Shell.sh
will interpret any non-zero digit as a one. Therefore, 8020 would be
interpreted as 1010, and 5500 would be interpreted as 1100, etc. The field
descriptions are listed as follows:

FIELD 1 - 1 (or any non-zero digit) = Use shared memory if
1 available
0 = Do not use shared memory

FIELD 2 - 1 (or any non-zero digit) = If shared memory fails
continue using ASCI|I
files

0 = If shared memory fails stop now

FIELD 3 - 1 (or any non-zero digit) = Use Log Files
O =Donot use Log Files

FIELD 4 - 1 (or any non-zero digit) = If Log Filesfail
continue anyway
0=1If Log Filesfail stop now

REQUIREMENTS: PGSTK-1312

6-142 333-CD-004-002

Toolkit Initialization Command

NAME: PGS PC_InitCom

SYNOPSIS: PGS _PC_InitCom <shared-memory-flag> <log-file-flag> <num.-smf-
records>

C: N/A

FORTRAN: N/A

DESCRIPTION: Thisprogram performs the initialization for the PGE.
INPUTS: argc-number of command line arguments
argv[0]-executable name (not processed but listed here anyway)
argv[1]-flag stating whether or not to use shared memory
argv|[2]-flag stating whether or not to writeto alog file
argv[3]-number of SMF records to store in shared memory
OUTPUTS: NONE

RETURNS: PGS S SUCCESS
PGS SH_MEM_INIT
PGS SH_SMF_LOGFILE
PGS SH_PC_LOADDATA
PGS SH_PC_ENV
PGS _SH_SMF_SHMMEM

EXAMPLES: PGS_PC I nit Com Shntn LogOn 50
PGS_PC_| ni t Com ShnOf f LogOn 100
NOTES: This program is intended to be run from within PGS_PC_Shell.sh and is

not designed to be run from the command line as a stand-alone program.

REQUIREMENTS: PGSTK-1311

6-143 333-CD-004-002

Get Physical File Reference Command

NAME:
SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

EXAMPLES:

PGS PC_GetReferenceCom
PGS PC_GetReferenceCom <logica ID> <version>

This program will retrieve the physical file reference associated with a
logical ID.

argc-number of command line arguments
argv[0]-executable name (not processed but listed here anyway)
argv[1]-logical ID of the configuration parameter

argv[2]-version of the physical file reference to retrieve. A one-to-one
relationship exists between al files except for product input files.

NONE

PGS S SUCCESS

PGS SH_SYS PARAM
PGS SH_PC_NODATA
PGS SH_PC_TOOLERROR

This is within a shell script - probably within the
PCGE shell.

Logi cal | D=12297
Ver si on=1

CGet the physical file reference associated
with ID 12297

REFERENCE=" PGS_PC _Cet Ref er enceCom $Logi cal | D $Versi on’
RETVAL=$?

Check the return val ue
if [$RETVAL -eq O]
t hen
continue normal processing
This is howthe file nane and versions renaining
can be parsed.
FI LENAME=" echo $REFERENCE | cut -f1 -d" “°
VERSI ONS=" echo $REFERENCE | cut -f2 -d” *
FILENAME now contains the file reference.
VERSI ONS now contai ns the versions remaining.
el se

6-144 333-CD-004-002

report an error found
fi

Another method of performing this task is as listed below. This method
only worksin the Korn and Bourne shells.

This is within a shell script - probably within the
PCE shell.

Logi cal | D=12297
Ver si on=1

Get the physical file reference associ ated

with ID 12297

set ~PGS_PC _Cet Ref erenceCom $Logi cal | D $Versi on’
The file reference and versions renmaining wll
now appear in two separate tokens.

RETVAL=$?

Check the return val ue
if [$RETVAL -eq O]

t hen

continue normal processing
FI LENAMVE=$1
VERSI ONS=$2

FILENAVE now contains the file reference.

VERSI ONS now contai ns the versions remaining.
el se

report an error found

fi

A final method of performing this task is as listed below. This method
only worksin the Korn and Bourne shells.

This is within a shell script - probably within the
PCE shell.

Logi cal | D=12297
Ver si on=1

Get the physical file reference associ ated
with ID 12297
set " PGS_PC_Cet Ref erenceCom $Logi cal I D $Version™”

6-145 333-CD-004-002

NOTES:

Placing double quotes around the command causes
the string to be placed in one token.
RETVAL=$?

Check the return val ue
if [$RETVAL -eq O]
t hen
continue normal processing
This is how the file name and versions renaining
can be parsed.
FI LENAME=" echo $1 | cut -f1 -d” “°
VERSI ONS="echo $1 | cut -f2 -d” “°
FILENAVE now contains the file reference.
VERSI ONS now cont ains the versions remaining.
el se
report an error found
fi

This program is designed to be run from within the PGE script.

The user will be required to parse the file name and number of files
remaining from the output string. This can be done using the cut command
(See EXAMPLES). The file name and versions remaining will be
separated by a single space.

REQUIREMENTS: PGSTK-1290

6-146 333-CD-004-002

Get User Defined Configuration Parameters Command

NAME: PGS PC_GetConfigDataCom
SYNOPSIS: PGS _PC_GetConfigDataCom <logical 1D>

DESCRIPTION: This program will retrieve user defined configuration parameters from the
PCF or shared memory at the command line.

INPUTS: argc-number of command line arguments
argv[0]-executable name (not processed but listed here anyway)
argv[1]-logical ID of the configuration parameter

OUTPUTS: NONE

RETURNS: PGS S SUCCESS
PGS SH_SYS PARAM
PGS SH_PC_NODATA
PGS SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PCGE shell.

Logi cal | D=12297

Get the paranmeter associated with 1D 12297
CONFI G=" PGS_PC_Get Conf i gDat aCom $Logi cal | D'
RETVAL=$?

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing
el se

report an error found

fi

NOTES: This program is designed to be run from within the PGE.
REQUIREMENTS: PGSTK-1291

6-147 333-CD-004-002

Get Number Of Files Command

NAME: PGS PC_GetNumber OfFilesCom
SYNOPSIS: PGS PC_GetNumberOfFilesCom <logical ID>

DESCRIPTION: This program will retrieve the number of product input files from the PCF
or shared memory at the command line.

INPUTS: argc-number of command line arguments
argv[0]-executable name (not processed but listed here anyway)
argv[1]-logical ID of the product input filesto be inquired
OUTPUTS: NONE

RETURNS: PGS S SUCCESS
PGS SH_SYS PARAM
PGS SH_PC_NODATA
PGS SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PCGE shell.

Logi cal | D=12297

Get the nunber of product files associ ated

with ID 12297

NUMFI LES=" PGS_PC_Get Nunber O Fi | esCom $Logi cal | D’
RETVAL=$?

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing
el se

report an error found

fi

NOTES: This program is designed to be run from within the PGE.
REQUIREMENTS: PGSTK-1315

6-148 333-CD-004-002

Get File Attribute Command

NAME:
SYNOPSIS:

DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

EXAMPLES:

PGS PC_GetFileAttrCom
PGS _PC_GetFileAttrCom <logical ID> <version> <format flag>

This program will retrieve afile attribute string or location associated with
a product input file from the PCF or shared memory at the command line.

argc-number of command line arguments

argv[0]-executable name (not processed but listed here anyway)
argv[1]-logical ID of the configuration parameter
argv[2]-version number of fileto retrieve attribute for

argv[3]-format flag that states whether to return the attribute or the
location of the file attribute. Possible values are:

PGSd_PC_ ATTRIBUTE_LOCATION
PGSd_PC_ATTRIBUTE_STRING

NONE

PGS S SUCCESS
PGS SH_SYS PARAM
PGS SH_PC_NODATA
PGS SH_PC_TOOLERROR
PGS SH_PC_TRUNC

The following exampleisvalid for the Bourne and Korn shells only.

This is within a shell script - probably within the

PGE scri pt.

Set our format flag values. (This is Bourne shell format)
These val ues are set in PGS PC Shell. sh.

: ${ PGSd_PC _ATTRI BUTE_LOCATI ON=1}

${ PGSd_PC_ATTRI BUTE_STRI NG=2}

H OB B

Logi cal | D=12297
Ver si on=1
For mat Fl ag=$PGSd_PC_ATTRI BUTE_STRI NG

Get the file attribute string associated with

the first file of product 1D 12297

ATTR="PGS_PC Get Fil eAttr Com $Logi cal | D $Versi on $For mat Fl ag’
RETVAL=$?

6-149 333-CD-004-002

NOTES:

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing

Variable ATTR now contains the attribute string
el se

report an error found

fi

If the user wishes to use a c-shell script thisis the recommended technique
to use. In a c-shell script if the user fails to use this technique the script
will give undefined results (see NOTES).

This is within a shell script - probably within the

PGE scri pt.

Set our format flag values. (This is Bourne shell format)
These val ues are set in PGS PC Shell. sh.

set PGSd_PC_ATTRI BUTE_LOCATI ON=1

set PGSd_PC_ATTRI BUTE_STRI NG=2

H OB B

set Logical | D=12297
set Version=1
set For mat Fl ag=$PGSd_PC_ATTRI BUTE_STRI NG

Get the file attribute string associated with

the first file of product 1D 12297

PGS PC GetFil eAttr Com $Logi cal | D $Versi on $For mat Fl ag
>out.file

set RETVAL=$st at us

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing

File out.file now contains the attribute string
el se

report an error found

fi

This program is designed to be run from within the PGE.

6-150 333-CD-004-002

If the format flag passed in is equal to PGSd_PC_ATTRIBUTE_STRING
the return value is the attribute string appended as one long string. If the
format flag passed in is equal to PGSd_PC_ATTRIBUTE_LOCATION
the return value is the attribute location that is afull path and file name of
the file containing the attribute string.

If the user wishes to use this program in a c-shell script the output of the
program must be re-directed to afile and the file can then be manipulated.
A long string can not be assigned to a variable in a c-shell script.
Attempting to assign along string to a variable will give undefined results
in the c-shell.

REQUIREMENTS: PGSTK-1314

6-151 333-CD-004-002

Get the Temporary File Reference Command

NAME:
SYNOPSIS:
DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

EXAMPLES:

PGS PC_GetTempReferenceCom
PGS PC_GetTempReferenceCom <logical ID> <duration of file>

This program will retrieve a temporary file reference from the PCF. If a
reference does not exist it will create one.

argc-number of command line arguments

argv[0]-executable name (not processed but listed here anyway)
argv[1]-logical 1D of the temporary file reference

argv[2]-file duration

NONE

PGS S SUCCESS
PGS SH_SYS PARAM
PGS_SH_PC_TOOLERROR

This is within a shell script - probably within the
PCE shel I .

Set our endurance values. (This is Bourne shell format)
These val ues are set in PGS PC Shell. sh.

${ PGSd_| O _Gen_NoEndur ance=0}

${ PGSd_| O_Gen_Endur ance=1}

R s S H* H#*

Logi cal | D=12297
Endur ance=$PGSd_| O_Gen_NoEndur ance

Cet the tenporary physical file reference associated
with ID 12297

TEMPREFERENCE=" PGS_PC_Get TenpRef erenceCom $Logi cal I D
$Endur ance’

RETVAL=$?

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing

This is howthe file nane and existence flag

can be parsed.
FI LENAME=" echo $TEMPREFERENCE | cut -f1 -d” “°
EXI STS=" echo $TEMPREFERENCE | cut -f2 -d” “°

6-152 333-CD-004-002

FILENAVE now contains the file reference.
EXI STS now contains the existence flag.
el se

report an error found

fi

Another method of performing this task is as listed below. This method
only worksin the Korn and Bourne shells.

This is within a shell script - probably within the
PCE script.

Set our endurance values. (This is Bourne shell format)
These val ues are set in PGS PC Shell. sh.

${ PGSd_| O _Gen_NoEndur ance=0}

${ PGSd_| O_Gen_Endur ance=1}

R s S H* H#*

Logi cal | D=12297
Endur ance=$PGSd_| O_Gen_NoEndur ance

Cet the tenporary physical file reference associated
with ID 12297

set “PGS_PC Get TenpRef erenceCom $Logi cal | D $Endur ance’
The file reference and existence flag wll

now appear in two separate tokens.

RETVAL=$?

Check the return val ue
if [$RETVAL -eq O]

t hen

continue normal processing
FI LENAMVE=$1
EXI STS=$2

FILENAVE now contains the file reference.
EXI STS now contains the existence fl ag.
el se

report an error found

fi

A final method of performing this task is as listed below. This method
only worksin the Korn and Bourne shells.

6-153 333-CD-004-002

NOTES:

This is within a shell script - probably within the
PCE script.

Set our endurance values. (This is Bourne shell format)
These val ues are set in PGS PC Shell. sh.

${ PGSd_| O _Gen_NoEndur ance=0}

${ PGSd_| O_Gen_Endur ance=1}

R s S H* H#*

Logi cal | D=12297
Endur ance=$PGSd_| O_Gen_NoEndur ance

Cet the tenporary physical file reference associated
wth ID 12297

set “ PGS _PC _Get TenpRef er enceCom $Logi cal | D $Endur ance™”
Placing double quotes around the command causes

the string to be placed in one token.

RETVAL=$?

Check the return val ue
if [$RETVAL -eq O]
t hen
continue normal processing
This is howthe file nane and versions remaining
can be parsed.
FI LENAME="echo $1 | cut -f1 -d” “°
EXI STS="echo $1 | cut -f2 -d” “°
FILENAME now contains the file reference.
EXI STS now contains the existence flag.
el se
report an error found
fi

This program is designed to be run from within the PGE.

If a temporary file reference does not exist for the logical ID then a
reference is created. The user will be able to determine if the reference
existed by checking the existence flag portion of the program return (See
EXAMPLES).

The user will be required to parse the file name and the existence flag
from the output string. This can be done using the cut command (See
EXAMPLEYS). The file name and the existence flag will be separated by a
single space.

REQUIREMENTS: PGSTK-0531, PGSTK-0535, PGSTK-1291

6-154 333-CD-004-002

Delete Temporary File Command

NAME: PGS PC_TempDeleteCom
SYNOPSIS: PGS _PC_TempDeleteCom <logical D>

DESCRIPTION: This program will flag a temporary file as deleted in the PCF or shared
memory at the command line.

INPUTS: argc-number of command line arguments
argv[0]-executable name (not processed but listed here anyway)
argv[1]-logica ID of the temporary file to be deleted
OUTPUTS: NONE

RETURNS: PGS S SUCCESS
PGS SH_SYS PARAM
PGS SH_PC_NODATA
PGS SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PCGE shell.

Logi cal | D=12297

Delete the tenporary file with the logical 1D 12297
PGS_PC _TenpDel et eCom $Logi cal | D
RETVAL=$?

Check the return val ue

if [$RETVAL -eq O]

t hen

continue normal processing
el se

report an error found

fi

NOTES: This program is designed to be run from within the PGE.
REQUIREMENTS: PGSTK-0521

6-155 333-CD-004-002

Get File Size Command

NAME: PGS PC_GetFileSizeCom
SYNOPSIS: PGS _PC_GetFileSizeCom <logical 1D>

DESCRIPTION: This program will retrieve the file size of the file associated with the input
logical ID and version in the users Process Control File (PCF).

INPUTS: argc-number of command line arguments
argv[Q] - logical ID (in the PCF) of the desired file
argv[1] - file version number

OUTPUTS: NONE

RETURNS: PGS S SUCCESS
PGS SH_SYS PARAM
PGS SH_PC_TOOLERROR

EXAMPLES: # This is within a shell script - probably within the
PCE shell. This exanple assunes there is an entry for
for a file in the users PCF with logical ID 101

Logi cal | D=101
Ver si on=1

Get the physical file size associated with the user's
input argunents Logical I D and Version

Sl ZE= " PGS_PC _Cet Fi | eSi zeCom $Logi cal | D $Versi on”
RETVAL=%$?

Check the return val ue

if [$RETVAL -eq O]
t hen

S|l ZE now contains the file size.
continue normal processing...

el se

handl e error case...

fi

6-156 333-CD-004-002

NOTES: This program is designed to be run from within the PGE.
REQUIREMENTS: PGSTK-1290

6-157 333-CD-004-002

Toolkit Termination Command

NAME:
SYNOPSIS:
C:
FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

EXAMPLES:

NOTES:

PGS PC TermCom

PGS _PC_TermCom <shared-memory-flag> <log-file-flag>
N/A

N/A

This program runs the functions necessary to clean up shared memory,
send runtime files, send logfiles, update the PCF, and remove temporary
files.

argc-number of command line arguments

argv|[0]-executable name (not processed but listed here anyway)
argv[1]-flag stating whether or not to use shared memory
argv[2]-flag stating whether or not to write to alog file

NONE

PGS S SUCCESS

PGS SH_PC_DELETETEMP
PGS SH_SMF_SENDRUNTIME
PGS SH_SMF_SENDLOGFILE
PGS SH_MEM_TERM

PGS _PC Ter nCom ShnmOF f LogOf f
PGS_PC Ter nCom ShmOn LogOf f

The send file capability of PGS PC_TermCom is SCF functionality.
This functionality will be disabled at the Release B DAACSs, but will
remain available to the SCF toolkit.

The PGS _PC_TermCom tool was developed two years ago to allow SCF
developers to send files to other locations in the absence of a data
distribution capability. This toolkit tool was not meant to replace the ECS
DAAC distribution system, but to supply functionality prior to the system
availability. Instrument teams can use the distribution system, by writing
an ESDT for QA files. The subscription service (B.1) can then push the
files to the requestor.

In the B.0 timeframe, there is no push, per se. A work-around could be to
use the Version 0 Client ordering function. Or, an email message could be
sent, announcing the presence of a QA file. If this message were sent to a

6-158 333-CD-004-002

special account, a script could then be run to pull the QA files out of the
DAAC. Thisisatemporary solution, prior to B.1 operation.

If a PGE Fails.. Files are marked for sending, packaged up in a Failed
Production History tar file (if and only if the PGE fails), and archived on
the Data Server. The SCF is then notified and can retrieve it. If the PGE
succeeds, the marked files are not put into atar file.

The SCF Functionality:

This program is designed to be run from within the PGS_PC_Shell.sh
script and is not intended to be run as a stand alone program from the
command line. Running this program outside the script PGS _PC_Shell.sh
will give undefined results.

Since this tool now supports the transfer of status and runtime files, certain
steps need to be performed by the user to ensure that this transfer
operation is carried-out properly.

FILE TRANSFER SETUP

The current transfer mechanism (ftp) requires the use of a ‘.netrc’ file,
which must reside in the user’s home directory on the execution host. ‘ftp’
accesses this file to establish a connection with the remote host. Once the
connection is made, the process of performing the actual file transfer can
proceed.

Thisfile must contain information in the following format:
machine <hostname> login <username> password <userpassword>
For example:

machine adriatic login guest password anonymous

For reasons of security, the ‘.netrc’ file should ONLY have read
permission for the user, (i.e., -rw-------).

(Refer to the man pages on netrc for more information.)
PROCESS CONTROL SETUP

As part of the transfer operation, this tool also transmits a notification
message to the interested parties to inform them as to the disposition of the
requested runtime and status files.

As with many other Process Control tools, this tool depends on certain
entries in the Process Control File. The values of these entries however are
user defined according to their local environment.

Refer to the standard Process Control File to find the following entries:

6-159 333-CD-004-002

10109|TransmitFlag; 1=transmit,0=disabl€e|0
- Set to 1 to enable file/e-mail transmission.

10106|RemoteHost|<hostname>
- Host should be the same as that which appearsin the *.netrc’ file.

10107|RemotePath|<destination directory>
- Directory must be writeable and large enough to hold the
transferred data.

10108|Email Addresses|<list of notification addresses>
- Notification message indicates which files have been transferred
and where they currently reside.

WARNING-Do not attempt to transfer files to the same host and directory
that this program is running on. The original files will be deleted in
accordance with the ftp protocol for sending and receiving files. That isto
say that, upon determination that the destination file is the same as the
source; the destination file will be removed before sending the sourcefile.

REQUIREMENTS: PGSTK-1311

6-160 333-CD-004-002

6.2.3.2 Process Control API Tools

Get a File Reference from Logical

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURNS:

PGS PC_GetReference()

#include <PGS_PC.h>

PGSt_SMF_status
PGS PC_GetReference(
PGSt PC Logica prodiD,

PGSt_integer *version,

char *referencel D)
include' PGS_SMF-.f’
include' PGS _PC.f’

include' PGS _PC 9.f’

integer function pgs_pc_getreference(prodid,version,referenceid)
integer prodid
integer version
character* 200 referenceid

This tool may be used to obtain a physical reference (file name) from a
logical identifier.

prodiD-User defined constant identifier that internally represents the
current product.

version-Version of reference to get. Remember, for standard input files
there can be a many-to-one relationship.

referencel D-The actual file reference returned as a string

version-The number of versions remaining for the requested Product 1D

Table 6-51. PGS _PC _GetReference Returns

Return Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_REFERENCE_FOUND | link number does not have the data that mode is requesting

PGSPC_E DATA ACCESS ERROR problem while accessing PCS data

6-161 333-CD-004-002

EXAMPLES:
C: #defi ne MODI S1A 2530

PGSt _i nt egerversi on;
char ref erencel D PGSd_PC FI LE_PATH MAX] ;
PGSt _SMF_st at us returnStat us;

/# Get first version of the file #/
version = 1;

returnStatus =
PGS_PC _Cet Ref er ence(MODI S1A, &ver si on, referencel D) ;

/# version now contains the nunber of versions remaining #/

if (returnStatus != PGS_S SUCCESS)
got o EXCEPTI ON
el se
{ I'# performnecessary operations on file #/ }

EXCEPTI ON
return returnStatus;
FORTRAN: implicit none
i nt eger version
character*135 referenceid
i nt eger retur nst at us
i nt eger pgs_pc_getreference
i nt eger nodi sla

par anet er (rmodi sla = 2530)

C CGet the first version of the file
version = 1

returnstatus = getreference(nodisla, version,referenceid)

if (returnstatus .ne. pgs_s_success)
goto 9999
el se

C perform necessary operations on file

9999 return

6-162 333-CD-004-002

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_FILE_PATH_MAX charactersin length (see PGS_PC.h).

The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of afile when the user requests
version one (1) the value seven (7) is returned in version. When the user
requests version two (2) the value six (6) is returned in version, etc.
Therefore, it is not recommended to use version as a loop counter that is
also passed into PGS _PC_GetReference().

REQUIREMENTS: PGSTK-1290

6-163 333-CD-004-002

Access File Reference Type from PCF

NAME: PGS PC_GetReferenceType()
SYNOPSIS:
C #include <PGS _PC.h>

PGSt_SMF_status

PGS PC_GetReferenceType(
PGSt PC Logica identifier
PGSt_integer *type)

FORTRAN: include' PGS _SMF-.f’
include' PGS _PC.f’
include' PGS _PC 9.f’

integer function pgs_pc_getreferencetype(identifier,type)
integer identifier
integer type

DESCRIPTION: This tool may be used to ascertain the type of file reference that is
associated with alogical identifier within the science software.

INPUTS: identifier-The logical identifier as defined by the user. (This value must
be mapped to an actual value viathe PCF.)
OUTPUTS: type-Reference types that are defined in the PGS _PC header file.

Possible values are:

PGSd_PC_INPUT_FILE_NAME
PGSd_PC_OUTPUT_FILE_NAME
PGSd_PC_TEMPORARY _FILE
PGSd_PC_INTERMEDIATE_INPUT
PGSd_PC_INTERMEDIATE_OUTPUT
PGSd_PC_SUPPORT IN_NAME
PGSd_PC_SUPPORT_OUT_NAME

RETURNS:
Table 6-52. PGS _PC_GetReferenceType Returns
Return Description
PGS_S SUCCESS successful execution
PGSPC_W_NO_FILES FOR_ID The Product ID does not contain a physical reference.
PGSPC_E_ENVIRONMENT_ERROR Environment variable not set
PGSPC_E_DATA ACCESS _ERROR Error accessing Process Control Status data

6-164 333-CD-004-002

EXAMPLES:

C: #defi ne I NSTR_SCRATCH_SPACE 2001

PGSt _SMF_status returnStatus;
PGSt _PC Logical fileldentifier;
PGSt i ntegerfil eType;

fileldentifier = I NSTR_SCRATCH_ SPACE;
/# getting the type attribute of a file #/

returnStatus =
PGS_PC Cet Ref erenceType(fileldentifier, & il eType);
if (returnStatus != PGS_S SUCCESS)

{
got o EXCEPTI ON;

}

el se
{
switch (fileType)
{
case PGSd_PC | NPUT_FI LE_NAME:
case PGSd_PC_CUTPUT_FI LE_NAME:
case PGSd_PC SUPPORT | N_NAME:
case PGSd_PC _SUPPORT_QUT_NAME:
| #
open standard product or support file
#1
returnStatus = PGS_| O Gen_Open();

br eak;

case PGSd_PC | NTERVEDI ATE | NPUT:
case PGSd_PC_| NTERMVEDI ATE_OUTPUT:
case PGSd_PC TEMPORARY_FI LE:
| #
open tenporary or internmediate file
#1
returnStatus = PGS_| O Gen_Tenp_Open();

br eak;

6-165 333-CD-004-002

FORTRAN:

getti

open

defaul t:

| #
invalid type returned only in the event that
call to *Get ReferenceType was not successfu
#/
} /# end switch (fileType) #/
}
EXCEPTI ON:

return returnStatus;
inmplicit none

| NTEGER | NSTR_SCRATCH SPACE
PARAVETER (| NSTR_SCRATCH SPACE = 2001)

i nteger returnstatus

integer fileidentifier

i nteger filetype

i nteger pgs_pc_getreferencetype

fileidentifier = I NSTR_SCRATCH SPACE
ng the type attribute of a file

returnstatus =
pgs_pc_getreferencetype(fileidentifier,filetype)
if (returnstatus .ne. pgs_s_success) then
goto 9999

else if (
(filetype .eq. PGSd_PC | NPUT_FI LE NAME) . or.
(filetype .eq. PGSd_PC QUTPUT_FI LE_NAME) . or.
(filetype .eq. PGSd_PC SUPPORT_I N_NAME) . or.
(filetype .eq. PGSd_PC _SUPPORT_QUT_NAME)
) then

standard product or support file

returnstatus = PGS_| O Gen_OpenF(...);

else if (
(filetype .eq. PGSd_PC_| NTERVEDI ATE_|I NPUT) . or.
(filetype .eq. PGSd_PC_| NTERVEDI ATE_QUTPUT) .or.

6-166 333-CD-004-002

(filetype .eq. PGSd_PC TEMPORARY FI LE)
) then

C open tenporary or internmediate file

returnstatus = PGS_| O Gen_Tenp_OpenF(...);

el se
C invalid type returned only in the event that
C call to *GetReferenceType was not successf ul
endi f
9999 return
NOTES: This tool will return the reference type (mode) for files that have

references in a Process Control File (PCF). This tool will not identify
runtime parameters as such.

In order for thistool to function properly, a valid Process Control File will
need to be created first. Please refer to Appendix C (User’s Guide) for
instructions on how to create and validate such afile.

REQUIREMENTS: PGSTK-1290.

6-167 333-CD-004-002

Generate a Unique ID

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURNS:

PGS _PC_GenUniquel D()

#include <PGS _PC.h>

PGSt_SMF_status

PGS PC_GenUniquel D(
PGSt PC Logica prodiD,
char *uniquel D)

include' PGS _SMF-.f’
include' PGS _PC.f’
include' PGS _PC 9.f’

integer function pgs_pc_genuniqueid(prodid,uniqueid)
integer prodid
character* 200 uniqueid

This tool may be used to generate a unique product identifier. This
identifier may be attached to file metadata to facilitate tracking of
production output. The identifier may include Production Run ID, the
Science Software Program 1D, and the actual Product ID.

prodiD-The logical identifier as defined by the user. The users
definitions will be mapped into actual identifiers during the
Integration & Test procedure.

uniquel D-The unique ID generated by this function. This D will be
returned as astring. The ID is guaranteed to be no greater than
PGSd PC_LABEL_SIZE_MAX inlength (see PGS_PC.h).

Table 6-53. PGS _PC _GenUniquelD Returns

Return Description

PGS_S SUCCESS successful execution

PGSPC_E_DATA ACCESS _ERROR error accessing PCS data

EXAMPLES:
C:

#defi ne CERES3A 300

PGSt _SMF_st at us returnStatus;
char uni quel D[PGSd_PC _LABEL_SI ZE MAX] ;

returnStatus = PGS_PC GenUni quel D{ CERES3A, uni quel D) ;

6-168 333-CD-004-002

if (returnStatus != PGS_S SUCCESS)
got o EXCEPTI ON

el se

{
/# attach uniquelD into file netadata field #/

}

EXCEPTI ON

return returnStatus;

FORTRAN: inmplicit none

i nt eger ret ur nst at us

charact er*200 uni quei d

i nt eger pgs_pc_genuni quei d

i nt eger ceres3a

par anet er (ceres3a = 300)

returnstatus = pgs_pc_genuni quei d(cer es3a, uni quei d)

if (returnstatus .ne. pgs_s_success) then

got o 9999
el se
C attach uniqueid into file netadata field
endi f
return
NOTES: If more than one product is being generated from the same PGE, then the

appropriate product identifier must be used as input to this function when
called from within the science software. Upon entry into this function all
input values will be checked to determine that legal values were passed in.
If any valueisillegal, the function will return the proper error value to the
calling function. All unique identifier strings are guaranteed to be no
greater than PGSd_PC_LABEL_SIZE_MAX characters in length (see
PGS _PC.h).

REQUIREMENTS: PGSTK-1280.

6-169 333-CD-004-002

Get User Defined Configuration Values

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

RETURNS:

PGS PC_GetConfigData()

#include <PGS _PC.h>

PGSt_SMF_status
PGS PC_GetConfigData(

PGSt PC Logical configParamiD,
char *configParamV al)
include' PGS _SMF-.f’
include' PGS _PC.f’

include' PGS _PC 9.f’

integer function pgs_pc_getconfigdata(configparamid,
* configparamval)

integer configparamid

character* 200 configparamval

This tool may be used to import run-time configuration parameters into
the PGE.

configParamI D-User defined constant that internally represents a
configuration parameter.

configParamVal-A string representation of the configuration parameter
value. No interpretation of thisvalue will be done in the Toolkit;
the value returned will be left to the application programmer.

Table 6-54. PGS _PC_GetConfigData Returns

Return Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_CONFIG_FOR_ID

no configuration data for product id

PGSPC_E_DATA_ACCESS_ERROR

error accessing PCS data

EXAMPLES:
C:

#def i ne

char
PGSt _SMF_st at us
| ong

MODI S1A_CONFI GL 2990

confi gParanVal [PGSd_PC VALUE LENGTH MAX] ;
returnStatus,
configl;

6-170 333-CD-004-002

FORTRAN:

OO0 0O0

returnStatus =
PGS_PC_Cet Confi gDat a(MODI SIA_CONFI G1, confi gPar anVval) ;

if (returnStatus != PGS_S SUCCESS)
got o EXCEPTI ON
el se

{
/# MODI S1IA CONFIGL is integral parameter #/

configl = atoi (configParanval);

if (configl > 0)

{
/# activate sub-process A #/
}
el se
{
/# activate sub-process B #/
}
}
EXCEPTI ON

return returnStatus;

inmplicit none

charact er*200 confi gpar anval

i nt eger returnstatus

i nt eger pgs_pc_get confi gdat a

i nt eger configl

i nt eger nodi sla_configl

par anet er (rmodi sla_configl = 2990)

returnstatus =
pgs_pc_get confi gdat a(nodi sla_confi gl, confi gparanval)

if (returnstatus .ne. success) then
goto 9999
el se

nodi sla_configl is integral paramneter

assum ng you have a function to convert character
data to integer data - called..... strtoint.
strtoint (configparanval, configl)

6-171 333-CD-004-002

if (configl .gt. 0) then

C activate sub-process A
el se
C activate sub-process B
endi f
endi f
return
NOTES: All configuration parameter value strings are guaranteed to be less than

PGSd PC VALUE LENGTH_MAX characters in length (see
PGS_PC.h). There will be a shell script command version of this routine
to retrieve configuration information from the script.

REQUIREMENTS: PGSTK-1290.

6-172 333-CD-004-002

Get Number of Files Associated with a Product

NAME:

SYNOPSIS:

C #include <PGS _PC.h>
PGSt_SMF_status

PGS PC_GetNumber OfFiles()

PGS PC_GetNumberOfFiles(

PGSt PC Logical

PGSt_integer

include' PGS _SMF-.f’
include' PGS _PC.f’
include' PGS _PC 9.f’

FORTRAN:

prodiD,
*numkFiles)

integer function pgs_pc_getnumberoffiles(prodid,numfiles)

integer prodid,
integer numfiles)

DESCRIPTION:

This tool may be used to determine the number of files that are associated

with a particular Product ID. A many-to-one relationship may exist with
Product Input, Product Output Support Input and Support Output files.
This function will give the user a way to determine how many files exist

for aproduct ID.
INPUTS:

prodiD-The logical identifier as defined by the user. The user's

definitions will be mapped into actual identifiers during the
Integration & Test procedure.

OUTPUTS:
RETURNS:

numberOfFiles-Total number of files for aparticular product ID.

Table 6-55. PGS _PC_GetNumberOfFiles Returns

Return

Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_FILES_FOR_ID

incorrect number of configuration parameters

PGSPC_E_DATA_ACCESS_ERROR

error accessing PCS data

EXAMPLE:
C: #defi ne

PGSt _i nt eger nuntFi | es;
PGSt _i nt egerversi on;

6-173

CERES4 7090

333-CD-004-002

PGSt _SMF_st at us returnStatus;
i nt | oopCount er;
char ceresFil es[10] [PGSd_PC_FI LE_PATH_NAX] ;

returnStatus = PGS_PC CGet Nunmber O Fi | es(CERES4, &nunti | es) ;

if (returnStatus != PGS_S SUCCESS)
got o EXCEPTI ON
el se

{
[# loop and get file nanmes #/

for (loopCounter = 0; |oopCounter < nuntil es;
| oopCount er ++)

{
/# specify which file to get #/
version = | oopCounter + 1;
/# save references for future use #/

returnStatus =
PGS _PC Cet Ref er ence(CERES4, &ver si on,
ceresFil es[| oopCounter]);

}

}
EXCEPTI ON

return returnStatus,;

FORTRAN: inmplicit none

i nt eger nunfiles
i nt eger version
i nt eger returnstatus
i nt eger | oopcount er
charact er *355 referenceid
charact er *355 ceresfil es(10)
i nt eger pgs_pc_get nunberof fil es
i nt eger pgs_pc_getreference
i nt eger ceres4
par anet er (ceres4 = 7090)

returnstatus = pgs_pc_get nunberoffil es(ceres4, nunfil es)

6-174 333-CD-004-002

if (returnstatus .ne. pgs_s_success)

goto 9999
el se
do 100 | oopcounter = 1, nunfiles
versi on = | oopcounter
returnstatus = pgs_pc_getreference(ceres4,
* ver si on,
* ceresfil es(l oopcounter))
100 conti nue
9999 return
NOTES: This function will allow a one-to-many relationship to exist between

logical and physical file name. The file version number is returned in
reverse order. For example, if there are eight (8) versions of a Product ID
and the user requests the first one, the value eight (8) would be returned in
numFiles.

REQUIREMENTS: PGSTK-1290

6-175 333-CD-004-002

Get the Attribute of the File Associated with the Particular

Product ID and Version

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

PGS _PC_GetFileAttr()

#include <PGS_PC.h>

PGSt_SMF_status
PGS _PC_GetFileAttr(
PGSt PC Logica prodiD,

PGSt_integer version
PGSt_integer formatFlag,
PGSt_integer maxSize,
char *fileAttribute)
include' PGS_SMF.f’
include' PGS _PC.f’

include' PGS PC 9.f’

integer function pgs_pc_getfileattr(prodid,version,formatflag,fileAttribute)
integer prodid
integer version
integer formatflag
integer maxSize
character*(*) fileAttribute

This tool may be used to retrieve an attribute associated with a particular
product ID and version number. The data placed in the attribute will be
defined and interpreted by the user. The SDP Toolkit has no dependency
on the attribute.

prodiD-The logical identifier as defined by the user. The user’'s
definitions will be mapped into actual identifiers during the
Integration & Test procedure.

version-The particular version of the Product ID that the attribute is being
requested from. With files there may be a many-to-one
relationship.

formatFlag-Flag indicating method of attribute return. Possible values
are:

PGSd_PC_ATTRIBUTE_LOCATION
PGSd_PC_ATTRIBUTE_STRING

6-176 333-CD-004-002

OUTPUTS:

RETURNS:

maxSize-Amount of space allocated for attribute if formatFlag is
PGSd PC_ ATTRIBUTE_STRING.

fileAttribute-The actud file attribute

If formatFlag is PGSd_PC_ATTRIBUTE_LOCATION then fileAttribute
will return the file containing the attribute.

If formatFlag is PGSd PC_ATTRIBUTE_STRING then fileAttribute will
return the attribute as a string.

Table 6-56. PGS _PC _ GetFileAttr Returns

Return Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_REFERENCE_FOUND [no reference found matching product id and version number

PGSPC_W_ATTR_TRUNCATED not enough space passed in for attribute

PGSPC W _NO_ATTR_FOR_ID a physical reference was found but no attribute exists for

that reference

PGSPC_E_DATA_ACCESS_ERROR error accessing PCS data

PGSPC_E_INVALID_MODE invalid format flag value passed in

EXAMPLE:
C:

#defi ne MODI S1A 4220

PGSt _i nt egerversi on;
PGSt _i nt eger maxSi ze;
PGSt _SMF_st at us returnStatus;

char fileAttribute[PGSd_PC FI LE PATH MAX];
version = 1;
maxSi ze = O;

/# get the attribute file name of the first MODI S1A file #/

returnStatus = PGS _PC CGetFil eAttr (MODI S1A, version,
PGSd_PC_ATTRI BUTE_LOCATI ON, maxSi ze, fil eAttribute);

if (returnStatus != PGS _S SUCCESS)
got o EXCEPTI ON;
el se

{

/# open attribute file and search attribute for particular
data #/

6-177 333-CD-004-002

EXCEPTI ON
return returnStatus;

FORTRAN: implicit none
i nt eger version
i nt eger returnstatus
i nt eger nmaxsi ze
charact er *355 fileattribute
i nt eger pgs_pc_getfileattr
i nt eger nodi sla
par anet er (nmodi sla = 4220)
version =1

maxsi ze = 355
C get the attribute file nane of the first nodisla file

returnstatus = pgs_pc_getfileattr(nodi sla, version
PGSd_PC _ATTRI BUTE_LOCATI ON, nexsi ze, fil eattri bute)

if (returnstatus .ne. pgs_s_success) then

goto 9999
el se
C open attribute file and search attribute for
C particul ar data
endi f
return
NOTES: Allocating enough space for the attribute variable will be the responsibility

of the application programmer. This function will write the attribute into
fileAttribute for maxSize bytes or the end of the attribute, which ever
comesfirst.

REQUIREMENTS: PGSTK-1290, PGSTK-1310

6-178 333-CD-004-002

Get the Version Number of the Particular File Matching the Attribute

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

PGS PC_GetFileByAttr()

#include <PGS _PC.h>

PGSt SMF_status
PGS PC_GetFileByAttr(
PGSt PC Logica prodiD,

PGSt_integer (* searchFunc)(char *attr),
PGSt_integer maxSize,
PGSt_integer *version)

include' PGS_SMF.f’

include' PGS _PC.f’

include' PGS PC 9.f’

integer function
pgs _pc_getfilebyattr(prodid,searchfunc,
* maxsize,version)
integer prodid
integer searchfunc
integer maxSize
integer version

Thistool may be used to retrieve the version number associated with afile
with a particular attribute.

prodiD-The logical identifier as defined by the user. The user's
definitions will be mapped into actual identifiers during the
Integration & Test procedure.

searchFunc-A user defined function that performs the search on the
attribute. This function must be passed in as a type PGSt_integer
function. It should return type PGSd PC_ MATCH upon a
successful attribute match or PGSd_PC_NO_MATCH upon an
unsuccessful attribute match.

maxSize-Maximum amount of space to place into attribute.

version-The version number of the file with the successful attribute match

6-179 333-CD-004-002

RETURNS:
Table 6-57. PGS _PC_GetFileByAttr Returns

Return Description
PGS _S SUCCESS successful execution
PGSPC_W_NO_ATTR_MATCH did not find a match with the specified product ID
PGSPC_W _NO_ATTR_FOR_ID the product ID contains no attribute
PGSPC_E_DATA ACCESS _ERROR error accessing PCS data
EXAMPLE:
C: #define MODI SIA 5775
PGSt _i nt eger searchfunc_(char *attr); [# function

prot ot ype #/

/# The function passed into PGS PC GetFil eByAttr() MJIST be
cal l ed #/
| # sear chfunc_#/

PGSt _i nt eger maxSi ze;

PGSt i nt egerversi on;

PGSt _SMF_st at us returnSt at us;

char ref erencel Of PGSd_PC_FI LE_PATH _MAX] ;

maxSi ze = 300;

returnStatus = PGS _PC GetFil eByAttr (MODI S1A, sear chfunc_,
maxSi ze, &er si on) ;

if (returnStatus != PGS_S SUCCESS)
got o EXCEPTI ON;
el se

{

[# get file reference #/

returnStatus =
PGS_PC _Cet Ref erence(MODI S1A, versi on, referencl D) ;

EXCEPTI ON:
return returnStatus;

6-180 333-CD-004-002

FORTRAN: implicit none

i nt eger version
i nt eger sear chfunc

C The function passed into pgs_pc_getfilebyattr() MJIST be called searchfunc

i nt eger maxsi ze

i nt eger returnstatus

i nt eger pgs_pc_getfil ebyattr
i nt eger pgs_pc_getreference
char act er *355 referenceid

i nt eger nodi sla

par anet er (nmodi sla = 5775)

maxsi ze = 300

returnstatus = pgs_pc_getfil ebyattribute(nodisla,
* sear chf unc, naxsi ze, ver si on)

if (returnstatus .ne. pgs_s_success) then

goto 9999
el se
C
C get file reference
C
returnstatus = pgs_pc_getreference(nodi sla, version
* ref erencei d)
endi f
return
NOTES: The attribute checking is left to the application programmer. The attribute

for comparison must be passed into searchFunc by means of a global
variable. The attribute to be compared against will be passed into
searchFunc by the function PGS_PC_GetFileByAttr(). The function
searchFunc must have declared a variable large enough to handle the
incoming attribute. The attribute will be read until maxSize bytes or end of
file, which ever comefirst.

REQUIREMENTS: PGSTK-1290

6-181 333-CD-004-002

Check Process Control Information File (PCF)

NAME:
SYNOPSIS:

C:

FORTRAN
DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

EXAMPLE:

NOTES:

pccheck.sh

pccheck.sh [-h] <-i user-PCF> [-0 numbered-PCF] [-c standard PCF] [-5]
N/A

N/A

The purpose of this tool is to assist the developer in setting up a Process
Control File (PCF). This utility will help to point out simple syntax and
content errors that might lead to more serious runtime errors, if left
uncorrected. This tool will not, however, detect errors in logic, nor will it
correct PCF files.

- <PCF>-The -i flag will be followed by the Process Control Information
File. Thisflag is mandatory.

o <outfile>-The -o flag will be followed by afile name that will be output
by this command. The name of output file must be a file that does not
already exist. Thisflag isoptional.

h-Upon receiving the -h flag a short description of the usage of pccheck.sh
will be provided to the user and the command will exit.

c-The -c option will cause a compare to be run against a specified template
file. The compare will only compare the reserved Product ID’s.

s-The -sflag will cause all output except for the output from the -c flag to
be suppressed.

NONE
0 - Normal completion
1 - Error condition

pccheck.sh -i $PGSHOVE/ runtime/pcf.fil -o out.fil

pccheck.sh -o out.fil -i $PGSHOWE/ runtine/pcf.fil

pccheck. sh -i $PGSHOVE/ runtime/pcf.fil -o out.fil -c
$PGSRUN PC/ PCF. v3

pccheck. sh -i $PGSHOVE/ runtine/ pcf.fil -c $PGSRUN PC/ PCF. v3
-s

pccheck.sh -i in.fil

pccheck.sh -h

This shell script accepts an input file (PCF) and an optional output file.
The output file will be an exact copy of the input file except that line

6-182 333-CD-004-002

numbers are inserted into the file. This output file is provided as a
convenience to the user when analyzing the generated report, which
sometimes references line locations in the original PCF. This utility isaso
capable of comparing against a “standardized” PCF file to detect changes
that have been made to the SDP Toolkit specific records (those with
reserved logical identifiers in the 10K-11K range); the optional
suppression flag prevents all output, other than the comparison results,

from being reported.
REQUIREMENTS: PGSTK-1313

6-183 333-CD-004-002

Get Universal Reference from Logical

NAME: PGS PC_GetUniversalRef()
SYNOPSIS:
C #include <PGS _PC.h>
PGSt_SMF_status
PGS PC_GetUniversal Ref(
PGSt PC Logica prodiD,
PGSt_integer* version,
char * universal Ref)
FORTRAN: include ‘PGS_SMF.f’

include ‘PGS PC.f’
include ‘PGS _PC 9.f’

integer function
pgs_pc_getuniversalref(prodid,version,universalref)
integer prodid
integer version
character* 150 universalref

DESCRIPTION:

INPUTS:

This tool may be used to obtain a universal reference from a logical

identifier.

prodiD-User defined constant identifier that internally represents the

current product.

version-Version of reference to get. Remember, for Product Input files and
Product Output files there can be a many-to-one relationship.

OUTPUTS: universalRef-The actual universal reference returned as a string.

RETURNS:

Table 6-58. PGS _PC GetReference Returns

Return

Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_REFERENCE_FOUND

link number does not have the data that mode is requesting

PGSPC_E_DATA_ACCESS_ERROR

problem while accessing PCS data

PGSPC_W_NO_UREF_DATA

the product id and version contains no universal reference data

6-184 333-CD-004-002

EXAMPLES:

C.
#def i ne MODI S1A 2530

PGSt _i nt egerversion
char universal Ref [PGSd_PC_UREF_LENGTH_MAX] ;
PGSt _SMF_st at us returnStatus;

/# Get first version of the file #/
version = 1;

returnStatus =
PGS_PC_Get Uni ver sal Ref (MODI S1A, ver si on, uni ver sal Ref) ;

if (returnStatus !'= PGS_S SUCCESS)
got o EXCEPTI ON
el se
{ I'# performnecessary operations on file #/ }

EXCEPTI ON
return returnStatus;

FORTRAN: I MPLI CI' T NONE

i nt eger version

charact er*150 uni ver sal Ref
i nt eger returnstatus

i nt eger pgs_pc_get uni ver sa
i nt eger nodi sla

par aret er (rmodi sla = 2530)

C CGet the first version of the file
version = 1

returnstatus = getreference(nodi sla, version,referenceid)
if (returnstatus .ne. pgs_s_success)

goto 9999
el se

C perform necessary operations on file

9999 return

6-185 333-CD-004-002

NOTES: All reference identifier strings are guaranteed to be no greater than
PGSd_PC_UREF_LENGTH_MAX charactersin length (see PGS _PC.h).

The version returns the number of files remaining for the product group.
For example, if there are eight (8) versions of a when the user requests
version one (1) the value seven (7) isreturned in version. When the user
requests version two (2) the value six (6) is returned in version, etc.
Therefore, it is not recommended to use version as a loop counter that is
also into PGS PC_GetReference().

REQUIREMENTS: PGSTK-1290

6-186 333-CD-004-002

Get Size of a File

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:
RETURNS:

PGS PC_GetFileSize()

#include <PGS _PC.h>
#include <PGS_SMF.h>

PGSt SMF_status

PGS _PC_GetFileSize(
PGSt PC Logica prodiD,
PGSt_integer version,
PGSt_integer* filesize)

include' PGS_SMF.f’

include' PGS _PC.f’
include' PGS PC 9.f’

integer function pgs_pc_getfilesize(prodid,version,filesize)

integer prodid,
integer version,
integer filesize)

Thistool may be used to obtain the size of afile from alogical identifier.

prodiD-The logical identifier as defined by the user.

version - Version of reference to get.

filesize - The size of afile.

Table 6-59. PGS _PC _ GetFileSize Returns

Return

Description

PGS_S_SUCCESS

successful execution

PGSPC_W_NO_REFERENCE_FOUND

link number does not have the data that mode
is requesting

PGSPC_E_DATA_ACCESS_ERROR

error accessing PCS data

PGS_E_UNIX

Unix system error

PGS_E_TOOLKIT

an unexpected error occurred

6-187

333-CD-004-002

EXAMPLE:
C:

FORTRAN:
NOTES:

#defi ne PROD_I D 10501

PGSt _i nt egerversi on;
PGSt _i ntegerfilesize;
PGSt _SMF_st at us returnStatus;

/# Get first version of the file #/
version = 1;

returnStatus =
PGS _PC GetFil eSi ze(PROD_I D, version, & i | esi ze);

/# version now contains the nunber of versions remaining #/

if (returnStatus != PGS_S SUCCESS
got o EXCEPTI ON;

el se

{ I'# performnecessary operations on file #/ }

EXCEPTI ON:

return returnStatus;

In order for thistool to function properly, avalid Process Control file will
need to be created first. Please refer to Appendix C (User's Guide) for
instructions on how to create such afile.

REQUIREMENTS: PGSTK-1290

6-188 333-CD-004-002

6.2.4 Shared Memory Management Tools

The tools described in this section provide for a limited use of shared memory amongst
executables within a PGE. These tools allow for the creation of a single user memory segment
within a PGE, and for the subsequent attachment and detachment of that memory segment to
another executable within the same PGE. Due to the way in which shared memory is accessed,
the APIs for the C and FORTRAN programming languages are necessarily different. C users
may directly manipulate the shared memory area but FORTRAN users are limited to copying to
and from the shared memory area viaintermediary Toolkit functions. Note that the operation of
these tools is contingent on the assumption that the user will make proper use of the
initialization and termination commands that have been provided with this release of the
Toolkit (please note that the Memory Management initialization and termination routines
supplied with Toolkit 3 have been subsumed by corresponding Process Control commands
that MUST be invoked before and after the execution of the PGE respectively). The shell
utility PGS _PC_Shell.sh already activates the initialization and termination commands, so
user activation of these commands should not be performed if the shell utility is used.

6-189 333-CD-004-002

Create Shared Memory Segment

NAME: PGS MEM_ShmCreate()
SYNOPSIS:
C #include <PGS_MEM1.h>
PGSt_SMF_status
PGS _MEM_ShmCreate(
PGSt_uinteger size);
FORTRAN: integer function pgs_mem_shmcreate(size)
integer size
DESCRIPTION: This tool may be used to create a shared memory segment. This tool
should only be called once in a given processing script (PGE).
INPUTS size-size of the shared memory segment in bytes
OUTPUTS: None
RETURNS:
Table 6-60. PGS_MEM_ShmCreate Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment Variable “PGSMEM_SHM_SYSKEY” is not set
PGSMEM_E_SHM_MAXSIZE Maximum system-imposed shared memory exceeded
PGSMEM_E_SHM_MULTICREATE More than one shared-memory is created for a given PGE

EXAMPLES:
C:

t ypedef struct
{

int id;

char nsg[100];
} Test Struct;

TestStruct *shnPtr;
PGSt _SMF_status returnStatus,;

returnStatus = PGS_MEM ShntCreat e(si zeof (Test Struct);
if (returnStatus == PGS_S SUCCESS)

{
returnStatus = PGS_MEM ShmAttach((void **)&shnPtr);

6-190 333-CD-004-002

if (returnStatus == PGS_S_SUCCESS)
{
shnPtr->id = 123;
strcpy(shnPtr->neg, "Witing data into shared nenory”);

}
FORTRAN: i nt eger pgs_mem shncr eat e

i nteger returnstatus

i nt eger shm si ze

character*100 test_string

shm size = 100

test _string = “Witing data into shared nenory”

returnstatus = pgs_nmem shnctreate(shm si ze)
if (returnstatus .eq. pgs_s_success) then

returnstatus = pgs_memshmwite(test_string, shmsize)
endi f

I the contents of test_string have been witten to shared
I nenory which can be accesses by another process in the
I PGE

NOTES: This shared memory scheme is not A POSIX implementation and will
therefore be subjected to change when the POSIX.4 implementation is
available. System limitations will define the amount of memory that can
be alocated as a shared-memory segment. Only one memory segment
may be created per PGE; it may however be attached/detached as many
times as are required.

REQUIREMENTS: PGSTK-1241

6-191 333-CD-004-002

Attach Shared Memory Segment

NAME: PGS MEM_ShmAttach()
SYNOPSIS:
C #include <PGS_MEM .h>
PGSt_SMF_status
PGS _MEM_ShmAttach(
void **shm);
FORTRAN: None
DESCRIPTION: This tool may be used by an executable to attach to an existing shared
memory segment. PGS MEM _ShmCreate() should already be called,
either within the same executable or from an earlier executable within the
PGE. If the shared memory segment has been detached by calling
PGS MEM_ShmbDetach(), then you may re-attach the segment to your
process-space again.
INPUTS: shm-pointer referencing the shared memory segment
OUTPUTS: shm-pointer referencing the shared memory segment
RETURNS:
Table 6-61. PGS_MEM_ShmAttach Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE Shared-memory has not been attached to the process
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process

EXAMPLES:

t ypedef struct
{

intid;

char nsg[100] ;
} Test Struct;

PGSt _SMF_status returnStatus,;
Test Struct *shnPtr;

6-192 333-CD-004-002

PROCESSA:

returnStatus = PGS_MEM ShnCreat e(si zeof (Test Struct));
if (returnStatus == PGS_S SUCCESS)
{
returnStatus = PGS_MEM ShmAttach((void **)&shnPtr);
if (returnStatus == PGS_S SUCCESS)
{
shnPtr->id = 123;
strcpy(shnPtr->nsg, " From Process A');

PROCESSB:
returnStatus = PGS_MEM ShmAttach((void **)&shnPtr);
if (returnStatus == PGS_S SUCCESS)
{
if ((shnPtr->id = 123) && (strcnp(shnPtr->nsg, ” From
Process A’) == 0))
{
printf(“Reading data from Process A successful”);
}
}
NOTES: Before using this function, PGS MEM_ShmCreate() should have aready

be called, either within the same executable or from an earlier executable
within the PGE. If the shared memory segment has been detached by
calling PGS MEM_ShmDetach(), then you may re-attach the segment to
your process-space again.

This tool lets the system select the memory location for your shared
memory, thereby alowing the system to make the best possible use of its
memory resources.

This tool is not part of POSIX and is subjected to change when the
POSI X.4 implementation becomes available.

REQUIREMENTS: PGSTK-1241

6-193 333-CD-004-002

Detach Shared Memory Segment

NAME: PGS MEM_ShmDetach()
SYNOPSIS:
C #include <PGS_MEM1.h>
PGSt SMF_status
PGS MEM_ShmDetach(
void);
FORTRAN: None
DESCRIPTION: This tool may be used to detach a shared memory segment from a process
that it has been attached to.
INPUTS: None
OUTPUTS: None
RETURNS:
Table 6-62. PGS _MEM_ShmDetach Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_NOTATTACH Shared-memory has not been attached to the process
EXAMPLES: t ypedef struct

{

intid;

char nsg[100] ;
} Test Struct;

PGSt _SMF_status returnStatus;
Test Struct *shnPtr;

returnStatus = PGS_MEM ShnCreat e(si zeof (Test Struct));
if (returnStatus == PGS_S_SUCCESS)
{
returnStatus = PGS_MEM ShmAttach((void **)&shnPtr);
if (returnStatus == PGS_S SUCCESS)
{
shnPtr->id = 123;
strcpy(shnPtr->nsg, "Witing data into shared nenory”);

6-194 333-CD-004-002

PGS _MEM ShnDet ach() ;

}

NOTES: Note that this tool is not part of POSIX and is subjected to change when
the POSIX.4 implementation becomes available. This function will only
detach the shared memory segment from the process. The shared memory
segment will not be removed from the system by calling this tool;
therefore one can re-attach it again.

REQUIREMENTS: PGSTK-1241

6-195 333-CD-004-002

Read from Shared Memory Segment

NAME: PGS MEM_ShmRead()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS _SMF.f
include ‘PGS MEM_9.f’
integer function pgs_mem_shmread(mem_ptr, size)

integer Size
character mem_ptr(size)

DESCRIPTION: Thisfunction copies the contents of shared memory into a user allocated
(may be dynamically or statically allocated) memory area. Thisfunction is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tools PGS MEM_ShmAttach() and
PGS MEM_ShmDetach().

INPUTS:

Table 6-63. PGS_MEM_ShmRead Inputs
Name Description
size size (in bytes) of mem_ptr (see below)
OUTPUTS:
Table 6-64. PGS _MEM_ShmRead Outputs
Name Description
mem_ptr array or structure to which the contents of the shared
memory area will be written
RETURNS:
Table 6-65. PGS_MEM_ShmRead Returns
Return Description
PGS_S SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process shared-memory

6-196 333-CD-004-002

EXAMPLES:

FORTRAN:

NOTES:

999

i nt eger pgs_mem shnr ead
i nt eger si ze

character shm buffer(1000)

i nt eger returnstatus

returnstatus = pgs_mem shnread(shm buffer, size)
if (returnstatus .ne. pgs_s_success) goto 999

I the contents of shared nenmory (which may contain data
I froma previous process) have been copied to shm buffer

conti nue I process error conditions

Thistool is meant to be used by FORTRAN (77/90) users ONLY . C users
should use the functions PGS MEM_ShmAttach() and
PGS _MEM_ShmDetach().

The tool PGS MEM_ShmCreate() MUST be called before
PGS_MEM_ShmRead() isinvoked.

This tool is not part of POSIX and is subjected to change when the
POSI X.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically allocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and copy the contents of the shared memory into the
users memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

6-197 333-CD-004-002

Write to Share Memory Segment

NAME: PGS MEM_ShmWrite()

SYNOPSIS:

C: None

FORTRAN: include ‘PGS _SMF-.f’
include ‘PGS MEM_9.f’
integer function pgs_mem_shmwrite(mem_ptr, size)
integer size
character mem_ptr(size)

DESCRIPTION: Thisfunction copies the contents of a user allocated (may be dynamically
or statically allocated) memory area into shared memory. This function is
meant to be used by FORTRAN (77/90) users who cannot take advantage
of the C shared memory tool PGS MEM_ShmAttach() and
PGS MEM_ShmDetach().

INPUTS:

Table 6-66. PGS_MEM_ShmWrite Inputs
Name Description
mem_ptr array or structure the contents of which will be written
to the shared memory area
size size (in bytes) of mem_ptr (see above)
OUTPUTS: NONE
RETURNS:
Table 6-67. PGS_MEM_ShmWrite Returns
Return Description
PGS_S_SUCCESS Success
PGS_E_UNIX
PGSMEM_E_SHM_ENV Environment variable PGSMEM_SHM_SYSKEY is not
set
PGSMEM_E_SHM_NOTCREATE User defined shared-memory has not been created
PGSMEM_E_SHM_MULTIATTACH Multiply attached shared-memory in a process
PGSMEM_E_SHM_NOTATTACH Failed to attach shared memory to this process
shared-memory

6-198 333-CD-004-002

EXAMPLES:

FORTRAN:

NOTES:

999

i nt eger pgs_mem shmwrite
i nt eger si ze
i nt eger returnstatus

character shm buffer(1000)

' fill shmbuffer with interesting data
returnstatus = pgs_mem shmwite(shmbuffer, size)
if (returnstatus .ne. pgs_s_success) goto 999

I the contents of shmbuffer have been witten to the
I shared nmenory area which can be accessed by a subsequent
I process

conti nue I process error conditions

Thistool is meant to be used by FORTRAN (77/90) users ONLY. C users
should use the functions PGS_MEM_ShmAttach() and
PGS_MEM_ShmbDetach().

The tool PGS MEM_ShmCreate() MUST be called before
PGS MEM_ShmWrite() isinvoked.

This tool is not part of POSIX and is subjected to change when the
POSI X.4 implementation becomes available.

The user passes in a pointer to a user defined memory area (an area of
memory which has been either statically or dynamically alocated by the
user) and the size of that area. This function will retrieve the pointer to the
shared memory area and write the contents of the users memory area to
the shared memory area OVERWRITING whatever was previously in the
shared memory area. This function will then detach the shared memory
from the current process. Before exiting from the PGE, the system will
make sure that the attached shared memory segment will be removed from
the system.

REQUIREMENTS: PGSTK-1241

6-199 333-CD-004-002

6.2.5 Bit Manipulation Tools

It is assumed that bit-manipulation functionality will be provided inherently by the language for
‘C’ and Fortran90 and that users of Fortran77 will use compilers that conform to MIL STD 1753

to obtain these capabilities.

6-200 333-CD-004-002

6.2.6 Spacecraft Ephemeris and Attitude Data Access Tools

This tool group contains tools and associated software that provides access to the spacecraft
ephemeris and attitude at a given time. Currently the EOS_AM, EOS PM and TRMM platforms
are supported. In this release of the Toolkit, orbit and attitude data is supplied by the ECS
Spacecraft Orbit and Attitude Simulator.

6.2.6.1 Orbit and Attitude Simulator

The ECS Spacecraft Orbit and Attitude Simulator is based on Upper Atmosphere Research
Satellite (UARS) FORTRAN code. It has been completely rewritten in C and revised for EOS.

6.2.6.1.1 Brief Description

The spacecraft orbit simulator orbsim will create files of simulated spacecraft orbit and attitude
data necessary to test the SDP Toolkit spacecraft ephemeris and attitude data access tool
(PGS_EPH_EphemAttit()) in the SCF environment. Users may alternatively create their own
datafiles but MUST follow the ECS ephemeris and attitude file formats.

WARNING: this simulator uses a relatively simple algorithm and is meant to produce data for
software testing ONLY. This data should not be used for any actual processing or for prediction
purposes.

6.2.6.1.2 The SCF Environment

At the DAACs the users will be responsible for submitting the criteria upon which ephemeris
and attitude files will be staged for their PGE. The DAACs will populate the Process Control

File (PCF) appropriately based on this user supplied criteria. In the SCF environment users must
populate the PCF with appropriate ephemeris and attitude data files themselves. No tools that
require access to spacecraft ephemeris data will function without these ephemeris and attitude
files. An ephemeris file and an attitude file must be provided for any time during which
processing will be requested.

The PCF file provided with the Toolkit contains the Logical 1Ds which have been reserved for
the ephemeris and attitude data files. There is one Logical ID for each type of data and the
appropriate Logical ID MUST be used for each set of ephemeris and attitude files. Replace the
dummy values in the PCF with the actual location of the ephemeris and attitude files to be used.
Use the given ephemeris file Logical ID for all ephemeris data files and the given attitude file
Logical ID for al attitude files. To include multiple files of either type use file versioning. The
order of the filesis not important, the ephemeris and attitude access tool will sort the files before
attempting to access them (WARNING: providing files with overlapping start/stop times may
produce unexpected results).

The unconfigured ephemeris and attitude Logical 1D entries in the PCF look as follows
(respectively):

6-201 333-CD-004-002

10501|INSERT_EPHEMERIS FILES HERE||||[1
10502]INSERT_ATTITUDE_FILES HERE||||1

The configured entries should look something like this:

10501]TRMM _1994-01-12.eph|~/database/suns/EPH]|[|3
10501]TRMM_1994-01-13.eph|~/database/suns/EPH||||2
10501]TRMM _1994-01-14.eph|~/database/suns/EPH||||1
10502]TRMM_1994-01-12. att|~/database/suns/EPH]|||3
10502]TRMM_1994-01-13.att|~/database/sun5/EPH||[2
10502]TRMM_1994-01-14.att|~/database/sun5/EPH|||[1

See Section 6.2.3 Process Control Tools for adiscussion of the PCF and file versioning.

6.2.6.1.3 Running the Orbit/Attitude Simulator

The executable orbsimisinstaled in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory is in your path. To run the program, type “orbsim” at the command line
prompt (from any directory).

The simulator is self-explanatory (if you read the messages on the screen). A “q” may be entered
at any prompt to quit the simulator. At most prompts there will be a default value that can be
selected by merely returning at the prompt without typing any characters. These default values
will beindicated by “[]” (e.g., enter anumber [7]:).

The first prompt will request the spacecraft ID. The supported values for this are: TRMM,
EOS _AM, EOS PM.

The second prompt will request the start day. Enter the start day in CCSDS ASCII time code
(format A or B-see Time and Date Conversion Tools). Only the “date” portion of thisinput will
be used, any “time” portion will be ignored. The third prompt will request the stop day that
should be entered using the same format as the start day. The start and stop days are inclusive
(e.g., entering the same start and stop days will create the spacecraft ephemeris file for that day).
The fourth prompt will request the data (or time) interval in seconds. This number is a real
number that represents the time interval between data records in the file. These times represent
actual ephemeris data. This data will be returned to users directly through
PGS _EPH_EphemAttit(). Ephemeris data requested at times other than the actual record times
will be interpolated. After reading in the time interval, the simulator will display the start and
stop day and time interval entered, as well as the total size (in megabytes) of the data files that
will be created. The ssmulator will then request confirmation of these input values. If the values
are rejected the simulator will request the information again beginning with the start day until the
values are accepted.

Once the time information has been entered and confirmed the simulator will issue a prompt
requesting attitude “noise”. This simulator does not allow for any specific yaw, pitch or roll
variation, however attitude noise may be introduced to simulate small random variations in the
yaw, pitch and roll data reported. At the noise prompt the maximum desired amplitude in
arcseconds of the noise should be entered. This should be entered as a real number whose

6-202 333-CD-004-002

magnitude is LESS than 1000.0 arcseconds (only the magnitude will be considered; the sign of
the number will be ignored). The next prompt will be for attitude rate noise. This should be
entered as a real number whose magnitude is LESS than 1000.0 arcseconds/second. Entering
“N” at the first prompt (for attitude noise) will turn off this feature; and the roll, pitch and yaw
will always be reported as exactly zero. No noise is the default behavior.

The simulator will then prompt for the directory where the ephemeris and attitude files it
generates should be written to. The default installation directory is determined from the location
of the file leapsec.dat which is assumed to be in $PGSDAT/TD, the simulator will then define
the default directory as $PGSDAT/EPH. The location of the output directory is not significant to
the tool PGS_EPH_EphemAttit() in any way. The simulator will issue a prompt indicating the
default location and asking that the installation directory be specified. Any valid directory may
be specified at this prompt (arelative path may be used). The default directory can be selected by
merely entering return at this prompt. If an invalid directory is entered the prompt will be
reissued until avalid directory is entered.

After a valid directory has been indicated the simulator will attempt to create the spacecraft
ephemeris and attitude files for the times requested. The simulator will generate one file each of
ephemeris data and attitude data for each date specified. The files generated will follow the
naming convention <sc_name>_<date>.eph and <sc_name>_<date>.att for ephemeris and
attitude files respectively. The file names and lengths generated by the simulator are for
convenience only. Ephemeris and attitude data files may actually have any name and be of any
time duration. However, because of the simulator convention of one ephemeris file and one
attitude file per day, the simulator will NOT overwrite an existing file for the same spacecraft
and the same day, an error message will be issued and the file(s) will be skipped. If for any other
reason a file cannot be created the simulator will issue an error message and a prompt asking
whether or not it should continue. If directed to continue, the simulator will try one more time to
create the file and then continue on to the next file without further warning whether or not the
file could be created. The most likely scenario for this is when the user does not have write
permission for the directory specified. The above mentioned prompt allows the user to change
the directory permission and continue. If the simulator is unable to write to a file that it has
aready opened (e.g., the disk isfull) an error message will be issued.

When all files requested have been written (or skipped), a final prompt is issued allowing the
whole process to be repeated.

6.2.6.1.4 Spacecraft Ephemeris And Attitude File Formats

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)

6.2.6.1.5 Tools that Require Spacecraft Ephemeris Files

PGS _EPH_EphemAttit()
PGS _EPH_GetEphMet()
PGS _CBP_body inFOV()
PGS CBP_Sat CB_ Vector()
PGS _CSC_GetFOV_Pixel()

6-203 333-CD-004-002

PGS CSC_SubSatPoint()

PGS _CSC_Earthpt FOV()

PGS _CSC_Earthpt_FixedFOV()
PGS _CSC_ECItoORB()

PGS _CSC_ORBtoECI()

PGS CSC_ECItoSC()

PGS _CSC_SCtoECI()
PGS_CSC_ORBtoSC()

PGS _CSC_SCtoORB()

6.2.6.1.6 Warning

The files created by the simulator can be very large and keeping many of them around can
quickly fill ahard drive (one day of orbit datafor EOS_AM at the default time interval is nearly
nine megabytes). The size of the files can be reduced by choosing larger time intervals between
data records.

Thistool will create files for time in the far future or distant past if the user specifies them. The
time of each record in spacecraft ephemeris and attitude filesis kept in SDP Toolkit internal time
(see Time and Date Conversion Tools) which isaform of TAI time. The user will not be notified
if the file created is outside the times for which TAI is defined or currently known (relative to a
corresponding UTC time). The simulator will estimate the time and create thefile.

6.2.6.2 Ephemeris File Checker

The ECS Spacecraft Ephemeris File Checker can be used to check the format of exiting
spacecraft ephemeris files and/or attitude files. Thisis useful for verifying that an ephemerisfile
or an attitude file created by a user (i.e., not using the ECS Spacecraft Orbit and Attitude
Simulator) is properly formatted. The Ephemeris File Checker is also useful in checking on the
time resolution and spacecraft ID of an existing spacecraft ephemerisfile or attitude file.

6.2.6.2.1 Brief Description

The spacecraft ephemeris file checker (chkeph) will check the contents of spacecraft ephemeris
and attitude files. The checker will read the file header and verify that the metadata contained
therein is reasonable. If the header checks out, the checker will then check each record in the file
to verify that the times are properly specified (i.e., that the records are properly spaced in time).

6.2.6.2.2 Running the Ephemeris File Checker

The executable chkeph isinstalled in the $PGSBIN directory at installation time. Make sure the
$PGSBIN directory isin your path. To run the program type “chkeph” at the prompt with the
name(s) of any file(s) to be checked, e.g.,

chkeph TRMM_1998-02-01.eph TRMM_1998-02-02.eph

6-204 333-CD-004-002

If the file to be checked is not in the same directory as the one from which chkeph was invoked,
the path name must be specified as well (e.g., chkeph ../EPH/TRMM _1998-02-02.eph).

For each file specified chkeph will print out the data contained in the header and check the data
records. The first line printed will be the name of the spacecraft and the corresponding numeric
value of the Toolkit spacecraft ID (if the spacecraft is an ECS supported s/c). The next two lines
will be the numeric start and stop times (respectively) indicated in the header in internal time.
Each time will be followed on the same line with the CCSDS ASCII Code (format A)

representation of the equivalent UTC time. The next line will be the time interval. Note that this
guantity is for record keeping only (i.e., the value has no effect on Toolkit operation). Users
creating their own files (i.e., without using the orbsim utility--see above) may set thisfield to any

value. The next line will be the number of records expected to be in the file based on the number

of records specified in the file header. The first record will be checked to verify that the time of
the record is the same as the time specified as the start time in the file header. Each subsequent

record will then be checked to verify that the time of the record is greater than the time of the
record immediately preceding it. The last record in the file will be checked to verify that the time
of the record is the same as the time specified as the stop time in the file header. The Ephemeris
File Checker will issue appropriate error messages if it finds anomalies in the contents of the file
that it is checking.

6.2.6.3 Spacecraft Tags Definition File

As of Toolkit 5.2, spacecraft tags are no longer “hard-coded”. Spacecraft tags are defined in an
ASCII data file and looked up at runtime. This allows the Toolkit geolocation tools to
effectively support any spacecraft that has had it’s ephemeris and attitude data formatted for the
Toolkit (see Appendix L. Ephemeris And Attitude File Formats). The spacecraft tags definition
file is referenced via the Process Control File with the logical 1D of 10801. The file contains a
series of records (one per line) of the form:

<sC_tag>,<sc_nhame>,<ean>
Where:

<sc_tag> isthe numerical (integer) value of the spacecraft tag (passed to Toolkit functions).

<sc_name> istheactua name of the spacecraft as contained in the ephemerig/attitude file
header (see TablesL-1 and L-5).

<eao> isastring consisting of three digits describing the order of the Euler angles (e.g.:
321, 312, 212) as contained in the attitude file (see Table L-5).

As delivered the Tookit is configured to support the TRMM, EOS-AM 1 and EOS-PM platforms.
These entries in the spacecraft tags file should not be altered. Additional entries may be added
below these entries. Each entry should have a unique <sc_name> and <sc_tag>.

To ensure backward compatibility, the previous implementation of spacecraft tags has been
retained in the Toolkit software. That is, if thetagis TRMM, EOS-AM1, or EOS-PM and the
Spacecraft Tags Definition Fileis not found, the Toolkit will execute the old “hard coded’
method.

6-205 333-CD-004-002

Get Ephemeris and Attitude

NAME:
SYNOPSIS:
C:

FORTRAN:

PGS _EPH_EphemAttit()

#include <PGS_EPH.h>

pgst SMF_status

PGS_EPH_EphemAttit(

PGSt tag
PGSt_integer
char
PGSt_double
PGSt_boolean
PGSt_boolean
PGSt_integer
PGSt_double
PGSt _double
PGSt_double
PGSt_double
PGSt_double

include ‘PGS _SMF-.f’
include ‘PGS TD.f’
include ‘PGS TD_3.f’
include ‘PGS EPH_5.f’

SpacecraftTag,
numV alues,
asciiuTC[28],
offsety[],
orbFlag,

attFlag,
qualityFlags][2],
positionECI[][3],
velocityECI[][3],
eulerAngleq[][3],
xyzRotRateq[][3],
attitQuat[][4])

integer function pgs_eph_ephemattit(spacecrafttag,numval ues,asciiutc,

offsets,orbfl ag,attflag,qualityflags,
positioneci,vel ocityeci,eulerangles,

xyzrotrates,attitquat)
integer Spacecrafttag
integer numvalues
character* 27 asciiutc
double precision offsets(*)
integer orbflag
integer attflag
integer qualityflags(2,*)

double precision
double precision
double precision
double precision
double precision

6-206

positioneci(3,*)
velocityeci(3,*)
eulerAngles(3,*)
xyzrotrates(3,*)
attitquat(4,*)

333-CD-004-002

DESCRIPTION: Thistool gets ephemeris and/or attitude data for the specified spacecraft at
the specified times.

INPUTS:
Table 6-68. PGS _EPH_EphemAttit Inputs
Name Description Units Min Max

spacecraftTag | spacecraft identifier N/A

numValues num. of values requested N/A

asciiuTC UTC time reference start time in ASCII 1961-01-01 see NOTES

CCSDS ASCII time code A format
offsets array of time offsets in seconds seconds | depends on ascilUTC
relative to asciilUTC
orbFlag set to true to get ephemeris data TIF
attFlag set to true to get attitude data T/IF
OUTPUTS:
Table 6-69. PGS_EPH_EphemAttit Outputs
Name Description Units

qualityFlags | quality flags for position and attitude data see NOTES
positionECI | ECI position meters
velocityECI | ECI velocity meters/sec
eulerAngles | s/c attitude as a set of Euler angles radians
xyzRotRates | angular rates about body x, y and z axes radians/sec
attitQuat spacecraft to ECI rotation quaternion N/A

RETURNS:

Table 6-70. PGS _EPH_EphemAttit Returns

Return

Description

PGS_S_SUCCESS

Successful return

PGSEPH_W_BAD_EPHEM_VALUE

One or more values could not be determined

PGSEPH_E_BAD_EPHEM_FILE_HDR

No s/c ephemeris/attitude files had readable headers

PGSEPH_E_NO_SC_EPHEM_FILE

No s/c ephemeris/attitude files could be found for input times

PGSEPH_E_NO_DATA_REQUESTED

Both orbit and attitude flags are set to false

PGSTD_E_SC_TAG_UNKNOWN

Unrecognized/unsupported spacecraft tag

PGSEPH_E_BAD_ARRAY_SIZE

Array size specified is less than 0

PGSTD_E_TIME_FMT_ERROR

Format error in asciiUTC

PGSTD_E_TIME_VALUE_ERROR

Value error in asciilUTC

PGSTD_E_NO_LEAP_SECS

No leap seconds correction available for initial time (asciilUTC)

PGS_E_TOOLKIT

An unexpected error occured

EXAMPLES:

6-207 333-CD-004-002

C: #defi ne ARRAY_SI ZE 10

PGSt _doubl e of f set s[ARRAY_SI ZE] ;

PGSt _doubl e posi ti onECI [ARRAY_SI ZE] [3] ;
PGSt _doubl e vel oci t yECI [ARRAY_SI ZE] [3] ;
PGSt _doubl e eul er Angl es[ARRAY_SI ZE] [3] ;
PGSt _doubl e xyzRot Rat es[ARRAY_SI ZE] [3] ;
PGSt _doubl e attitQuat[ARRAY_SI ZE] [4] ;
char asci i Utq 28] ;

PGSt i ntegerqual i tyFl ags[ARRAY_SI ZE] [2] ;
int s
PGSt _SMF_st at us returnSt at us;

** initialize asciiUIC and offsets array **

strcpy(ascii UTC, "1998- 02- 03T19: 23: 45. 123");
for (i=0;i<ARRAY_SI ZE; i ++)
of fsets[i] = (PGSt_double) i

returnStatus PGS _EPH EphemAttit (PGSd_EOS AM nunVal ues,
ascii UTC, offsets, PGS TRUE, PGS _TRUE
qual i tyFl ags, positionEC, vel ocityEC

eul er Angl es, xyzRoteRates, attitQuat);

if (returnStatus != PGS_S SUCCESS)
{

** do sonme error handling **

}
FORTRAN: i nt eger nunval ues/ 10/
i nt eger [
i nt eger returnstatus
i nt eger qual i tyflags(2, nunval ues)

character*27asciiutc

doubl e precision offsets(nunval ues)
doubl e precision positioneci(3, numval ues)
doubl e precision velocityeci (3, nunval ues)
doubl e precision eul erangl es(3, numval ues)
doubl e precision xyzrotrates(3, numval ues)
doubl e precision attitquat (4, numval ues)

C initialize asciiutc and offsets array

6-208 333-CD-004-002

NOTES:

100

asciiutc = ©1998-02-03T19: 23:45.123

do 100 i 1, nunmval ues
of fsets(i) =i-1
returnstatus = pgs_eph_ephemattit(pgsd_eos_am nunval ues,
> asciiutc, pgs_true,
> pgs_true,attfl ag,
> qual i tyfl ags, positi oneci
> vel oci tyeci, eul erangl es,
> Xyzroterates,attitquat)

if (returnstatus .ne. pgs_s_success) then
*** do sonme error handling ***

endi f

The Euler angles are always relative to the geocentrically based
orbital reference frame The attitude rates for TRMM are relative to
geodetic orbital reference. The attitude rates for AM1 and later
spacecr aft are relative to inertial (J2000) reference. In all cases, the
attitude rates are the spacecraft angular velocity vector projected on
the body axes.

QUALITY FLAGS:

The quality flags are returned as integer quantities but should be
interpreted as bit fields. Only the first 32 bits of each quality flag is
meaningfully defined, any additional bits should be ignored (currently
integer quantities are 32 bits on most UNIX platforms, but this is not
guaranteed to be the case—e.g. an integer is 64 bits on a Cray).

Generally the quality flags are platform specific and are not defined by the
Toolkit. Two bits of these flags have, however, been reserved for SDP
Toolkit usage. Bit 12 will be set by the Toolkit if no datais available at a
requested time, bit 14 will be set by the Toolkit if the data at the requested
time has been interpolated (the least significant bit is “bit 0”). Any other
bits are platform specific and are the responsibility of the user to interpret.
See also Section L.3 (Quality Flags).

See Section 6.2.7.1 (Time Acronyms)
See Section 6.2.7.2 (ASCII Time Formats)
See Section 6.2.7.5.1 (TAI-UTC Boundaries)

6-209 333-CD-004-002

See Appendix L (ECS Spacecraft Ephemeris and Attitude File Formats)
TIME OFFSETS:

This function accepts an ASCII UTC time, an array of time offsets and the
number of offsets as input. Each element in the offset array is an offset in
seconds relative to the initial input ASCIlI UTC time.

An error will be returned if the number of offsets specified is less than
zero. If the number of offsets specified is actually zero, the offsets array
will be ignored. In this case the input ASCII UTC time will be converted
to Toolkit internal time (TAI) and this time will be used to process the
data. If the number of offsets specified is one (1) or greater, the input
ASCII UTC time will be converted to TAI and each element ‘i’ of the
input data will be processed at the time: (initial time) + (offset[i]).

Examples:

if numValuesisOand asciiUTC is“1993-001T12:00:00” (TAI:
432000.0), then input[O] will be processed at time 432000.0 and
return output[0]

if numValuesis1and asciiUTC is*“1993-001T12:00:00" (TAI:
432000.0), then input[0] will be processed at time 432000.0 +
offsetg[0] and return output[O]

if numValuesisN and asciiUTC is“1993-001T12:00:00" (TAI:
432000.0), then each input[i] will be processed at time 432000.0 +
offsetg[i] and the result will be output[i], wherei is on the interval
[O,N) ([1,N] in the case of FORTRAN)

ERROR HANDLING:

This function processes data over an array of times (specified by an input
ASCII UTC time and an array of time offsets relative to that time).

If processing at each input time is successful the return status of this
function will be PGS S SUCCESS (statuslevel of ‘S).

If processing at ALL input times was unsuccessful the status level of the
return status of this function will be ‘E’.

If processing at some (but not all) input times was unsuccessful the status
level (see SMF) of the return status of this function will be ‘W’ AND all
high precision real number (C: PGSt_double, FORTRAN: DOUBLE
PRECISION) output variables that correspond to the times for which
processing was NOT successful will be set to the value:
PGSd_GEO_ERROR_VALUE. In this case users may (should) loop
through the output testing any one of the aforementioned output variables
against the value PGSd_GEO_ERROR_VALUE. Thisindicates that there

6-210 333-CD-004-002

was an error in processing at the corresponding input time and no useful
output data was produced for that time.

Note: A return status with a status of level of ‘W’ does not necessarily
mean that some of the data could not be processed. The ‘W’ level may
indicate a general condition that the user may need to be aware of but that
did not prohibit processing. For example, if an Earth ellipsoid model is
required, but the user supplied value is undefined, the WGS84 model will
be used, and processing will continue normally, except that the return
status will be have a status level of ‘W’ to alert the user that the default
earth model was used and not the one specified by the user. The reporting
of such general warnings takes precedence over the generic warning (see
RETURNS above) that processing was not successful at some of the
requested times. Therefore in the case of any return status of level ‘W,’ the
returned value of a high precision real variable generally should be
examined for errors at each time offset, as specified above.

Specia Note: for this tool, the associated quality flags will also indicate
that no data is available for those points that could not be successfully
processed (see QUALITY FLAGS above).

REQUIREMENTS: PGSTK-0720, PGSTK-0141

6-211 333-CD-004-002

Get Ephemeris and Attitude Metadata

NAME: PGS EPH_GetEphMet()
SYNOPSIS:
C #include <PGS_EPH.h>

pgst SMF_status
PGS_EPH_EphMet(

PGSt tag SpacecraftTag,

PGSt_integer numV alues,

char asciiuTC[28],

PGSt_double offsety[],

PGSt_integer* numOrbits,

PGSt_integer orbitNumber([],

char orbitAscendTime[][28],

char orbitDescendTime[][28],

PGSt _double orbitDownLongitudg]])
FORTRAN: include ‘PGS_SMF.f’

include ‘PGS TD.f’
include ‘PGS TD_3.f’
include ‘PGS EPH _5.f’

integer function pgs_eph_ephemattit(spacecrafttag,numval ues,asciiutc,
offsets,numorbits,orbitnumber,orbitascendtime,
orbitdescendtime,orbitdownlongitude)

integer Spacecrafttag

integer numvalues

character* 27 asciiutc

double precision offsets(*)

integer numorbits

integer orbitnumber(*)
character* 27 orbitascendtime(*)
character* 27 orbitdescendtime(*)
double precision orbitdownlongitude(*)

DESCRIPTION: This tool returns the metadata associated with toolkit spacecraft
ephemeridattitude files.

6-212 333-CD-004-002

INPUTS:

Table 6-71. PGS _EPH_GetEphMet Inputs

Name Description Units Min Max

spacecraftTag | spacecraft identifier N/A
numValues num. of values requested N/A
asciuTC UTC time reference start time in ASCII 1961-01-01 see NOTES

CCSDS ASCII time code A format
offsets array of time offsets in seconds seconds | depends on asciilUTC

relative to ascilUTC

OUTPUTS:
Table 6-72. PGS _EPH_GetEphMet Outputs
Name Description Units

numOrbits number of orbits spanned by data set N/A
orbitNumber array of orbit numbers spanned by data set N/A
orbitAscendTime array of times of spacecraft northward equator crossings ASCII
orbitDescedTime array of times of spacecraft southward equator crossings ASCII
orbitDownLongitude | array of longitudes of spacecraft southward equator crossings | radians

RETURNS:

Table 6-73. PGS _EPH_GetEphMet Returns

Return Description

PGS_S_SUCCESS

Successful return

PGSEPH_E_NO_SC_EPHEM_FILE

times

No s/c ephemeris/attitude files could be found for input

PGSEPH_E_EPH BAD_ARRAY_VALUE | Array size specified is less than 0

PGSTD_E_TIME_FMT_ERROR Format error in asciiUTC

PGSTD_E_TIME_VALUE_ERROR Value error in asciiUTC

PGSTD_E_SC_TAG_UNKNOWN

Unrecognized/unsupported spacecraft tag

PGS_E_TOOLKIT

An unexpected error occured

EXAMPLES:
C:

#i ncl ude <PGS_EPH. h>

#defi ne ORBI T_ARRAY_SI ZE 5 /* maxi mum nunber
expected */

of orbits

#defi ne EPHEM ARRAY SI ZE 100 /* nunber of epheneris data

points */

6-213

333-CD-004-002

PGSt _doubl e of f set s| EPHEM ARRAY_SI ZF] ;
PGSt _doubl e or bi t downl ongi t ude[ORBI T_ARRAY_SI ZE] [3] ;

PGSt _i nt eger nuntOr bi ts;

char asci i Utq 28] ;
char or bi t AscendTi ne[ORBI T_ARRAY_SI ZE] [28] ;
char or bi t DescendTi nme[ORBI T_ARRAY_SI ZE] [28] ;

/* initialize asciiUTC and offsets array with the tines for
actual epheneris records that will be processed (i.e. by
some other tool) */

strcpy(ascii UTC, "1998-02-03T19: 23: 45. 123");

for (i=0;i<EPHEM ARRAY_SI ZE; i ++)
{

of fsets[i] = (PGSt_double) i*60.0;
}

/* get the ephenmeris netadata associated with these tinmes */

returnStatus = PGS_EPH Get EphMet (PGSd_ECS _AM
EPHEM ARRAY SI ZE, asci i UTC,
of fsets, &wunOrbits,
or bi t AscendTi ne,
or bi t DescendTi ne,
or bi t DownLongi t ude) ;

if (returnStatus !'= PGS_S SUCCESS)

** do some error handling **

/* nunOrbits will now contain the nunmber of orbits spanned
by the data set (as defined by ascii UTC and
EPHEM ARRAY_SI ZE of fsets). orbitAscendTinme will contain
numrbits ASCII UTC times representing the time of
northward equator crossing of the spacecraft for each
respective orbit. orbitDescendTime will simlarly
contain the southward equator crossing tines and
or bi t DownLongi tude will contain the southward equat or
crossing | ongi tudes */

6-214 333-CD-004-002

FORTRAN: inmplicit none

i nclude ‘PGS _EPH 5. f’
i nclude * PGS _TD. f’

i ncl ude ‘ PGS_TD 3. f’
i ncl ude ‘* PGS _SMF. f’

i nteger orbit_array_size/5/ I max. num orbits expected
i nteger ephem array_size/ 100/ ! num of ephem data points

doubl e precision of fsets(ephem array_size)
doubl e precision orbitdownl ongi tude(orbit_array_size)(3)

i nt eger nunor bi ts
character*27 asciiutc
character*27 orbi tascendtime(orbit_array_size)
character*27 orbitdescendtine(orbit_array_size)

! initialize asciiutc and offsets array with the tines for actua

! epheneris records that will be processed (i.e. by some other tool)

asciiutc = *1998-02-03t19: 23: 45. 123
do 100 i =1, ephem array_size
of fsets(i) = i*60.D0

100 continue

! get the epheneris nmetadata associated with these tines

returnStatus = pgs_eph_get ephnet (pgsd_eos_am

> ephem array_si ze, asciiutc,
of fsets, nunorbits,

or bi t ascendti ne,

or bi t descendti ne,

or bi t downl ongi t ude)

V V V V

if (returnStatus .ne. pgs_s_success) then
** do sonme error handling **

endi f

6-215 333-CD-004-002

! nunrbits will now contain the nunber of orbits spanned by the data set

! (as defined by ascii UTC and EPHEM ARRAY_SI ZE of fsets). orbitAscendTi ne

! will contain numOrbits ASCII UTC tinmes representing the tine of northward
! equat or crossing of the spacecraft for each respective orbit.

! orbitDescendTinme will simlarly contain the southward equator crossing

! ti mes and orbitDownlLongitude will contain the southward equator crossing

! [ongi t udes

NOTES: see NOTES section of PGS_EPH_EphemAttit()
REQUIREMENTS: PGSTK-0720, PGSTK-0141

6-216 333-CD-004-002

6.2.6.3 EPH Functions

PGS _EPH_EphemAttit

See description in 6.2.6.3 Spacecraft Ephemeris and Attitude Tool.
PGS EPH_GetEphMet

See description in 6.2.6.3 Get Ephemeris and Attitude Metadata.
PGS EPH _interpolateAttitude

Given apair of spacecraft attitudes (as Euler angles), attitude rates and their corresponding times
this function interpol ates the spacecraft attitude and attitude rates to a requested time between the
two input times.

PGS EPH_interpolatePosVel

Given a pair of spacecraft position vectors, velocity vectors and their corresponding times this
function interpolates the spacecraft position and veloctiy to a requested time between the two
input times.

6-217 333-CD-004-002

6.2.7 Time and Date Conversion Tools

The ability to convert easily and accurately between different representations of time is crucial to
EOS science data processing. The time and date conversion routines in the SDP Toolkit will
convert between spacecraft time, UTC, International Atomic Time (TAI) and Julian date, as well
as converting double precision values to and from CCSDS ASCII formats. Time values are
converted for use in science software and as parameters when performing geo-coordinate
transformations. In addition, converting time parameters to ASCII or to other more easily read
formats facilitates the time values being added to metadata and to various processing logs in a
human-readable form.

The spacecraft, UTC, Julian Date, and other times used as input and output for the time and date
conversion routines will be in accord with the Consultative Committee for Space Data Systems
(CCSDYS) standard time code formats where applicable. The formats are described in CCSDS
Blue Book, Issue 2, Time Code Formats, (CCSDS 301.0-B-2) issued by the Consultative
Committee for Space Data Systems (NASA Code- OS, NASA, Washington DC 20546), April

1990. Various EOS supported spacecraft will deliver time datain various CCSDS binary codes.

The Toolkit will translate times from these codes to more user friendly formats. Therefore,
binary formats will not be described in the present manual. The reader is referred to the Blue
Book and to interface documents for the particular spacecraft of interest. The ASCII codes will
be described herein both for the convenience of users, and because we have exercised discretion
in permitting or forbidding certain truncations.

Because UTC as a real variable is discontinuous at leap seconds boundaries (approximately
every one to two years) it has been decided to carry it only in ASCII formats. TAI time runs at
the same (Standard International compatible) rate and will be carried as a double precision
number, in two ways: Julian Date and seconds from Jan. 1, 1993 UTC midnight.

Toolkit times are either character strings (CCSDS ASCII format), an array of two high precision
real values (Toolkit Julian Dates) or asingle high precision real value (all other values).

6.2.7.1 Time Acronyms

GAST Greenwich Apparent Sidereal Time
GMST Greenwich Mean Sidereal Time
GPS Global Positioning System

MJID Modified Julian Date

TAI International Atomic Time

TDB Barycentric Dynamical Time

TDT Terrestrial Dynamical Time

TJD Truncated Julian Date

UT1l Universal Time

UTC Coordinated Universal Time

6-218 333-CD-004-002

6.2.7.2 ASCIl Time Formats

The CCSDS ASCII Time Codes (A and B formats) are defined in the CCSDS Blue Book, pages
2-6 to 2-8. The full format requires all the subfields be present, but certain subsets of the
complete time codes are alowed (pages 2-7 to 2-8 of the Blue Book). The Toolkit will handle
input and output with dlightly different restrictions.

CCSDS ASCII Time Code A as implemented by the Toolkit:
YYYY-MM-DDThh:mm:ss.d->dZ
[Example 2002-02-23T11:04:57.987654Z |
where
YYYY =afour character subfield for year, with value in range 0001-9999
MM = atwo character subfield for month with values 01-12, leading zeros required

DD = atwo character subfield for day with values in the range 01-eom, where eom is 28,
29, 30, or 31 according to the month (and, for February, the year)

The “T”, a separator, must follow the DD subfield; if and only if there are more
characters after the DD subfield; the string will be accepted and parsed such that mm, ss,
and d are treated as 0. In that case, a“Z” will still be accepted, but not required, at the
end.

hh = atwo character subfield for hours, with values 00-23
mm = atwo character subfield for minutes, with values 00-59

ss = a two character subfield for seconds, with values 00-59 (00-60 in a positive leap
second interval, 00-58 in the case of a negative leap second)

d->d an n-character subfield, (n < 7 for input n = 6 for output), for decimal fraction of a
second, with each digit in the range 0-9. If the decimal point appears on input, digits must
follow it.

Z - terminator, optional on input

The CCSDS ASCII Time Code B format, described on p. 2-7 of the Blue Book, is:
YYYY-DDDThh:mm:ss.d->dZ
[Example 2002-054T11:04:57.987654Z]

The format is identical to the Code A except that the month, day combination MM-DD is
replaced by day of year, i.e.,

DDD = Day of Year as a3 character subfield with values 001-365 in non leap years and
001-366 in leap years.

NOTE: The CCSDS Formats require all leading zeros be present.

6-219 333-CD-004-002

ASCII Time Input

ASCII time input strings may be in either CCSDS ASCII Time Code A format or CCSDS ASCII
Time Code B format. All Toolkit functions requiring input ASCII time strings will correctly
identify either format.

The Toolkit requires input ASCII time strings to include at least full dates (in format A or B) and
will accept ASCII time strings that include times with up to six digits after the decimal point, or
subsets truncated from the right (i.e., fractions of a second, whole seconds, minutes, or hours can
be omitted by the user and the values will be set to zero. If a subfield is omitted the whole
subfield should be omitted; e.g., “ss” cannot be replaced by “s’ for seconds.) The time string
may also not end with afield delimiter: “T”,”:” or “.”. Users are warned that no error status or
message will issue if any of these subfields is missing, so long as truncation is from the right;
users should be careful to pass a string of sufficient length to accommodate their datal The
Toolkit will not accept truncations from the left; i.e., the year, month and day must be present as
four, two, and two digits respectively, or the year as four digits and the day of year as three.
Truncation from the left would be too dangerous in view of the coming century change.

Finally, the Toolkit will provide an error message, which will include passing one or more of the
offending characters, if the format is violated by input data. In this context, day numbers in
excess of the allowable value for the month (and year, for February) are considered errors in
format (e.g., a fatal message will issue if DDD = 366 (format B) or MM = 02 and DD = 29
(format A) in a non leap year). A fatal message will issue if the integer part of the seconds
subfield runs over 58 in the presence of a negative leap second or over 59 in the absence of a
positive leap second. There is no protection against missing data in the presence of a positive
leap second if the integer seconds subfield fails to read 60; in that case Toolkit routines cannot
popul ate the leap second interval.

ASCII Time Output

All ASCII time output strings will be in CCSDS ASCII Time Code A format (except for the
output of PGS TD_ASClItime AtoB(), which will bein CCSDS ASCII Time Code B format).

The Toolkit will output the full format (date and time), to six digits in the fractional seconds,
even though the accuracy may be poorer than one microsecond. There are two reasons why the
Toolkit will output microseconds, even though most users will not want numbers more accurate
than one millisecond: (i) At least one platform (AM1) plans to provide microseconds; we do not
wish to degrade their resolution. (ii) We wish to provide for upgradeability.

The Toolkit will issue aterminal “Z” on the output string to facilitate identification of the end of
string and to signify Universal time.

The output strings will be 27 characters in Code A, including the “Z”, and 25 in Code B,
including the “Z” (Note: this does NOT include the terminating NULL character required
in C strings).

6-220 333-CD-004-002

6.2.7.3 Toolkit Internal Time (TAI)

Toolkit internal time is the real number of continuous Sl seconds since the epoch of UTC 12 AM
1-1-1993. Toolkit internal time is also referred to in the Toolkit as TAI (upon which it is based).
Values are maintained as single high precision real numbers (C: PGSt _double, FORTRAN:
DOUBLE PRECISION). The numbers will be negative until midnight, UTC Jan. 1, 1993 and
positive after that. The whole number part carries whole seconds and the fractional part carries
fractions of a second.

6.2.7.4 Toolkit Julian Dates

6.2.7.4.1 Format

Toolkit Julian dates are kept as an array of two real high precision numbers (C: PGSt_double,
FORTRAN: DOUBLE PRECISION). The first element of the array should be the half integer
Julian day (e.g., N.5 where N is a Julian day number). The second element of the array should be
area number greater than or equal to zero AND less than one (1.0) representing the time of the
current day (as a fraction of that (86400 second) day. This format allows relatively simple
translation to calendar days (since the Julian days begin at noon of the corresponding calendar
day). Users of the Toolkit are encouraged to adhere to this format to maintain high accuracy (one
number to track significant digits to the left of the decimal and one number to track significant
digits to the right of the decimal). Toolkit functions that do NOT require a Julian type date as an
input and that do return a Julian date will return it in the above mentioned format. Toolkit
functions that require a Julian date as an input and do NOT return a Julian date will first convert
(internally) the input date to the above format if necessary. Toolkit functions that have a Julian
date as both an input and an output will assume the input is in the above described format but
will not check and the format of the output may not be what is expected if any other format is
used for the input.

6.2.7.4.2 Meaning

Toolkit “Julian dates’ are all derived from UTC Julian Dates. A Julian date in any other time
stream (e.g., TAI, TDT, UTL, etc.) isthe UTC Julian date plus the known difference of the other
stream from UTC (differences range in magnitude from O seconds to about a minute). Note that
although UTC days having leap seconds actually contain 86401 seconds, this is not true for
Julian Days of any kind as implemented in the Toolkit. TAI, UT1, TDT and TDB Julian Days
are all 86400 seconds, while the UTC Julian Day with the leap second contains duplicate values
for one second; only in ASCII form does it have 86401 distinct seconds.

6.2.7.4.3 Examples

In the following examples, all Julian Dates are expressed in Toolkit standard form as two double
precision numbers. For display here, the two members of the array are enclosed in braces {} and
separated by a comma.

a UTCto TAI Julian dates conversion

6-221 333-CD-004-002

The Toolkit UTC Julian date for 1994-02-01T12:00:00 is: {2449384.50, 0.5}. TAI-UTC
at 1994-02-01T12:00:00 is 28 seconds (.00032407407407 days). The Toolkit TAl Julian
date for 1994-02-01T12:00:00 is:

{2449384.50, 0.5 + .00032407407407} = { 2449384.50, 0.50032407407407}

Note that the Julian day numbersin UTC and the target time stream may be different by
+ or - 1 for times near midnight.

b. UTCto UT1 Julian dates conversion

The Toolkit UTC Julian date for 1994-04-10T00:00:00 is: {2449452.50, 0.0}. UT1-UTC
at 1994-04-10T00:00:00 is -.04296 seconds (-0.00000049722221 days). The Toolkit UT1
Julian date for 1994-04-10T00:00:00 is:

{ 2449452 50, 0.0 - 0.0000004972222}
= { 2449452.50, -0.0000004972222}
= { 2449451.50, 0.9999995027778}

6.2.7.5 Time Boundaries

Many of the Toolkit functions that require time as an input or output keep track of time in the
SDP Toolkit internal time format (see above). Most of these functions depend on the file
leapsec.dat that contains the values of TAI-UTC (leap seconds).

Some Toolkit functions also (or instead) rely on the file utcpole.dat that contains the values of
UT1-UTC.

The times that can be processed by a function may depend on the values maintained in one or
both of these files which are updated periodically with new values.

6.2.7.5.1 TAI-UTC Boundaries

The minimum and maximum times that can successfully be processed by functions requiring the
value TAI-UTC depend on the file leapsec.dat that relates leap second (TAI-UTC) values to
UTC Julian dates.. The file leapsec.dat contains dates of new leap seconds and the total leap
seconds times on and after Jan 1, 1972. For times between Jan 1, 1961 and Jan 1, 1972 it
contains coefficients for an approximation supplied by the International Earth Rotation Service
(IERS) and the United States Naval Observatory (USNO). These approximations are the same as
adopted by the Jet Propulsion Laboratory (JPL) ephemeris group that produces the DE series of
solar system ephemerides, such as DE200, and are used consistently with IERS/USNO/JPL
usage. For times after Jan 1, 1961, but before the last date in the file, the Toolkit sets TAI-UTC
egual to the total number of leap seconds to date, (or to the USNO/IERS approximation, for dates
before Jan 1, 1972). If an input date is before Jan 1, 1961 the Toolkit sets the leap seconds value
to 0.0. Thisis consistent with the fact that, for civil timekeeping since 1972, UTC replaces
Greenwich Mean Solar Time (GMT), which had no leap seconds. Thus for times before Jan 1,
1961, the user can, for most Toolkit-related purposes, encode Greenwich Mean Solar Time as if
it were UTC. If an input date is after the last date in the file, or after Jan 1, 1961, but the file

6-222 333-CD-004-002

cannot be read, the function will use a calculated value of TAI-UTC based on alinear fit of the
data known to be in the table as of early 1997. This value is a crude estimate and may be off by
as much as 1.0 or more seconds. If the data file, leapsec.dat, cannot be opened, or the timeis
outside the range from Jan 1, 1961 to the last date in the file, the return status level will be 'E'.
Even when the status level is'E', processing will continue, using the default value of TAI-UTC
(0.0 for times before Jan 1, 1961, or the linear fit for later times). Thus, the user should always
carefully check the return status. For times between 1961 and 1972, the leap seconds file
contains data used in approximations designed to correct Greenwhich Mean Time to as close an
equivalent of UT1 as possible; the Toolkit thus determines Earth rotation from GMT in that
period.

6.2.7.5.2 UT1-UTC Boundaries

UT1 is the standard measure of axial Earth rotation and is used by all Toolkit functions for
geolocation that locate the spacecraft relative to Earth, or Earth relative to sky (inertial space).
UT1 can be reversibly transformed to "Greenwich Hour Angle". It is therefore important to
maintain accurate values of UT1. The minimum and maximum times that can successfully be
processed by functions requiring the value UT1-UTC depend on the file utcpole.dat that relates

UT1-UTC valuesto UTC dates. Thefile utcpole.dat starts at June 30, 1972.

The file utcpole.dat, which is maintained periodically, contains final (definitive) and predicted
valuesfor UT1 - UTC and related variables that describe polar motion, a small correction (~< 15
meters) to geographic positions due to polar wander and wobble. When the file is updated, the
definitive data will reach to within a week in the past of the update time, and the predicted data
will extend about one year into the future. A success status message will be returned if all input
times correspond to final values. A warning status message will be returned if predicted values
are encountered. An error message will be returned if the time requested is beyond the end of
the predictions, or the file cannot be read. The "predicted” values are expected to be satisfactory
for most users for several weeks, even if the file is not updated weekly as it should be, because
the predictions are rather good for many weeks. Users who desire to reprocess for better
accuracy (< 1 m Earth position) will notice their results changing. Because the U.S. Naval
Observatory (USNO) gradually refines its older solutions for Earth rotation, which are captured
inour file "utcpole.dat”, changes at the millimeter to centimeter level may be noticed weeks later
even for data processed with "fina" values for UT1. The following Table, based on error
estimates in the USNO data table “finals.data’ as of April 23, 1996, indicates the one-sigma
errors to be expected in using the file “utcpole.dat” . The days in the left column should be
interpreted as days since the last update of the file. The error is due to the inability to predict
Earth rotation precisely. The error for times in the recent past (not shown) isonly of order < 10
cm. The "interim" data quality supported in TK5 is no longer carried. The first few weeks of
predictions are as good as the old "interim" values. Note that the rather small error values in
Table 6-62 are atiny part of the overall difference, UT1 - UTC, which istypically in the range ~
-0.9t0 0.9 seconds, or ~ -420 to +420 m.

6-223 333-CD-004-002

Table 6-74. Estimated Errors in UT1 Predictions
(Milliseconds of Time and Equivalent Meters of Geolocation Error)

Error Error
Prediction Period (milliseconds) (meters at the equator)
(Days) (1 std deviation) (1 std deviation)

1 0.3 0.14
30 3.9 1.7
60 6.5 3.0
90 8.8 4.0
120 10.9 4.9
150 12.9 5.8
180 14.8 6.7
225 17.5 7.9
270 20.1 9.0
315 225 10.1
360 24.9 11.0
365 25.7 115

Because of the reduced accuracy with predicted UT1, and the maximum extension of one year to
the predictions, when arelevant function is used, the should carefully check the return status. A
success (‘S') level status message will be returned if all input times correspond to final values. A
warning (‘W) level status message will be returned if any input times correspond to predicted
values, even though the error may not be large enough to concern most users. An error (‘E’)
level status message will be returned if the file utcpole.dat cannot be found or if an input time is
outside the range of valuesin thefile.

These error messages due to end-of-data could cause problems for users who wish to run
simulations one year or more in advance. Users needing to run simulations in the far future can
follow procedures shown on the Toolkit Home Page under “Upgrading to Toolkit 5.2” at their
own risk. These procedures are risky in an SCF environment or other non-DAAC environment,
because of the possibility of pointing at the edited (and hence, false) data files when processing
real data. There could also be risk at a DAAC environment if anyone found a way to point at
these files with an altered PCF, e.g. if a command-line run were possible in processing science
data

6.2.7.6 Updating the Leap Seconds File

The file $SPGSDAT/TD/leapsec.dat contains- leap seconds data, used by many tools. Since the
information changes with time, the file must be periodically updated. The SDP Toolkit contains
utilities to perform this update function.

The shell script update leapsec.sh, which is found in $PGSBIN, will update the leapsec.dat file
to the current date. The clearcase version, update leapsec CC.sh, will do the same job within a

6-224 333-CD-004-002

Clear Case (CM) view. To maintain a current leapsec.dat, the appropriate script must be run at
least every six months. Leap seconds are usually added at the start of January or July, and
announced six months ahead. Therefore, mid January and mid July are appropriate times to
update the file. There would be no harm in running update |eapsec.sh monthly, however, and
this would allow for the possibility--unused so far--that leap seconds could be introduced at the
start of April or October. Update |leapsec.sh calls PGS TD_NewLeap, a C program that
performs most of the actual update work.

The update is done by collecting the latest information via ftp from the U. S. Naval Observatory,
which maintains a current list of leap seconds. (The leap seconds are actually declared about six
months ahead by International Earth Rotation Service (IERS) in France. At the DAACs, the
process is done automatically by the scheduler. At Science Computing Facilities, users running
the script must have a".netrc” filein their home directory with the entry

machine maia.usno.navy.mil login anonymous password EOSuser

The permissions on this file must be set to private (use "chmod go-rwx .netrc").

6-225 333-CD-004-002

6.2.7.7 Time and Date Conversion Tools

Convert UTC to TAI Time

NAME: PGS TD_UTCtoTAI()
SYNOPSIS:
C #include <PGS_TD.h>
PGSt_SMF_status
PGS TD_UTCtoTAI(
char asciiuUTC[28],
PGSt_double *secTAI93);
FORTRAN: include' PGS_SMF.f’
include'PGS TD_3.f’
integer function pgs td utctotai (asciiutc, sectai93)
character* 27 asciiutc
double precision sectai93
DESCRIPTION: This tool converts UTC time in CCSDS ASCII Time Code (A or B
format) to Toolkit internal time (real continuous seconds since 12AM
UTC 1-1-93).
INPUTS:
Table 6-75. PGS _TD_UTCtoTAl Inputs
Name Description Units Min Max
asciilUTC | UTC time in CCSDS ASCII Time | time 1961-01-01T00:00:00Z | see NOTES
Code A format or ASCII Time
Code B format
OUTPUTS:
Table 6-76. PGS _TD _UTCtoTAI Outputs
Name Description Units Min Max
secTAI93 | continuous seconds since 12AM UTC seconds -1009843225.5 see NOTES
Jan. 1, 1993

6-226

333-CD-004-002

RETURNS:
Table 6-77. PGS _TD UTCtoTAI Returns

Return Description
PGS_S SUCCESS Successful return
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E TIME_VALUE_ERROR Error in value of input ASCII UTC time
PGS_E_TOOKIT Something unexpected happened, execution aborted
EXAMPLES:
C. PGSt _SMF _status returnStatus;
char asci i Utq 28] ;
PGSt _doubl e secTAl 93;
strcpy(ascii UTC, " 1993-01- 02T00: 00: 00. 000000Z2") ;
returnStatus = PGS _TD UTCt oTAI (asci i UTC, &ecTAl 93);
if (returnStatus !'= PGS_S SUCCESS)
{
*** do sone error handling ***
}
printf(“TAl: %\n”, secTAl 93);
FORTRAN: inmplicit none
i nt eger pgs_td utctotai
i nt eger retur nst at us
character*27asciiutc
doubl e precision sectai93
asciiutc = *1993-01-02T00: 00: 00. 0000002
returnstatus = pgs_td utctotai (asciiutc, sectai 93)
if (returnstatus .ne. pgs_s_success) goto 999
wite(6,*) ‘TAl: ‘, sectai93
NOTES. TIME ACRONYMS:

TAIl is: International Atomic Time
UTCis: Universal Coordinated Time

TIME BOUNDARIES:
See Section 6.2.7.5.1 (TAI-UTC Boundaries)

6-227 333-CD-004-002

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal timeis the real number of continuous SI seconds since the epoch of UTC 12 AM
1-1-1993. Toolkit internal timeis also referred to in the toolkit as TAI
(upon which it is based).

REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

6-228 333-CD-004-002

Convert TAlto UTC Time

NAME: PGS TD_TAItoUTC()
SYNOPSIS:
C #include <PGS TD.h>
PGSt SMF_status
PGS TD_TAItoUTC(
PGSt_double secTAI93,
char asciiuTC[28]);
FORTRAN: include' PGS_SMF.f’
include'PGS TD_3.f’
integer function pgs td_taitoutc(sectai 93, asciiutc)
character* 27 asciiutc
double precision sectai93
DESCRIPTION: This tool converts Toolkit internal time (real continuous seconds since
12AM UTC 1-1-93) to UTC time in CCSDS ASCII Time Code A format.
INPUTS:
Table 6-78. PGS _TD_TAItoUTC Inputs
Name Description Units Min Max

secTAI93 | continuous seconds since 12AM | seconds -1009843225.577182 see NOTES
UTC Jan. 1, 1993

OUTPUTS:

Name

Table 6-79. PGS _TD_TAItoUTC Outputs
Description Units Min Max

asciiluTC UTC time in CCSDS ASCII Time time 1961-01-01T00:00:00 see NOTES
Code A format

RETURNS:
Table 6-80. PGS _TD TAItoUTC Returns
Return Description
PGS S SUCCESS Successful return
PGSTD_E NO _LEAP_SECS No leap seconds correction available for input time
PGS E TOOLKIT Something radically wrong occurred

6-229 333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

PGSt _SMF_st at us returnSt at us;
PGSt _doubl e secTAl 93;
char asci i Utq 28] ;

secTAl 93 = 86400. ;
returnStatus = PGS_TD TAIt oUTC(secTAl 93, asci i UTC);
if (returnStatus !'= PGS_S SUCCESS)

{

*** do sone error handling ***

}

printf(“UTC. %\n”, ascii UTC);
inmplicit none

i nt eger pgs_td_taitoutc
i nt eger retur nst at us

doubl e precision sectai93
character*27asciiutc

sectai 93 = 86400. DO

returnstatus = pgs_td_taitoutc(sectai 93, asciiutc)
if (returnstatus .ne. pgs_s_success) goto 999
wite(6,*) ‘UTC. ‘', asciiutc

TIME ACRONYMS:

TAIl is: International Atomic Time
UTCis: Universal Coordinated Time

TIME BOUNDARIES:
See Section 6.2.7.5.1 (TAI-UTC Boundaries)
TOOLKIT INTERNAL TIME (TAI):

Toolkit internal timeis the real number of continuous SI seconds since the epoch of UTC 12 AM
1-1-1993. Toolkit internal timeis also referred to in the toolkit as TAI

(upon which it is based).

REFERENCESFOR TIME:

CCSDS 2301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210, PGSTK-1220

6-230 333-CD-004-002

Convert Toolkit Internal Time to TAI Julian Date

NAME: PGS TD_TAItoTAljd()

SYNOPSIS:

C #include <PGS TD.h>
PGSt_double *

PGS TD_TAIltoTAljd(
PGSt_double secTAI93,
PGSt_double jdTAI[2])
FORTRAN include “PGS_SMF.f”
include“PGS TD_3.f”
double precision function pgs td _taitotaijd(sectai 93, jdtai)
double precision sectai93
double precision jdtai(2)

DESCRIPTION: This function convertstimein TAI seconds since 12 AM UTC 1-1-1993 to
TAI Julian date.

INPUTS:
Table 6-81. PGS _TD_TAItoTAljd.c Inputs

Name Description Units Min Max

secTAI93 Toolkit internal time (seconds since 12 AM seconds | UTC 1-1-1993

OUTPUTS:
Table 6-82. PGS _TD_TAItoTAljd Outputs
Name Description Units Min Max
JdTAlI TAI Julian date days 2437300.5 see NOTES
RETURNS: TAI Julian date (address of jdTAL).
EXAMPLES:
C. PGSt _doubl e secTAl 93;

PGSt _doubl e jdTAI [2];

secTAI 93 = 86400. ;

6-231 333-CD-004-002

PGS_TD TAI t oTAl j d(secTAl 93, j dTAI) ;

** JdTAI[0] should now have the val ue: 2448989.5 **
** JdTAI[1] shoul d now have the val ue: 0.0003125 **

FORTRAN: doubl e precision sectai 93
doubl e precision jdtai
sectai 93 = 86400. DO
call pgs_td_ taitotaijd(sectai 93, taijd)
I jdtai[0] should now have the val ue: 2448989.5

I jdtai[1] should now have the value: 0.0003125

NOTES: TAIl is: International Atomic Time

The tranglation to and from UTC begins Jan 1, 1961. It isvalid until about
6 months after the last leap second, in $PGSDAT/TD/leapsec.dat. When
the script $PGSBIN/TD/update_|leapsec.sh is run regularly the leap
seconds file will be kept current and will be valid six months ahead.

REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

REQUIREMENTS: PGSTK - 1220, 1160, 1170

6-232 333-CD-004-002

Convert TAIl Julian Date to Toolkit Internal Time

NAME: PGS TD_TAIljdtoTAI()
SYNOPSIS:
C: #include <PGS_TD.h>
PGSt_double
PGS TD_TAljdtoTAI(
PGSt_double jdTAI[2])
FORTRAN: double precision function pgs td taijdtotai(jdtai)
double precision jdtai(2)
DESCRIPTION: This function converts TAI Julian date to time in TAI seconds since 12
AM UTC 1-1-1993.
INPUTS:
Table 6-83. PGS _TD TAIljdtoTAl Inputs
Name Description Units Min Max
jdTAI TAI Julian date days 2437300.5 ANY
OUTPUTS: None
RETURNS: Toolkit internal time (seconds since 12 AM UTC 1-1-1993).
EXAMPLES:
C PGSt _doubl e secTAl 93;
PGSt _doubl e jdTAI[2];
jdTAI[0] = 2448989.5;
jdTAI[1] = 0.0003125;
secTAI 93 = PGS_TD TAlj dt oTAI (j dTAl);

/* secTAl 93 shoul d now have the val ue:

NOTES:

86400. */

TAIl is: International Atomic Time

REFERENCES FOR TIME:

6-233 333-CD-004-002

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems)
Astronomical Almanac, Explanatory Supplement to the Astronomical Almanac
REQUIREMENTS: PGSTK - 1220, 1160, 1170

6-234 333-CD-004-002

Convert TAlI to GAST

NAME: PGS TD_TAItoGAST()
SYNOPSIS:
C: #include <PGS_TD.h>

PGSt SMF_status

PGS TD_TAItoGAST(
PGSt_double secTAI93,
PGSt_double *gast)

FORTRAN: include’ PGS_SMF.f’
include' PGS _CSC_4.f
include'PGS TD_3.f’

integer function pgs td taitogast(sectai 93,gast)
double precision sectai93
double precision gast

DESCRIPTION: Thisfunction converts TAI (toolkit internal time) to Greenwich Apparent
Sidereal Time (GAST) expressed as the hour angle of the true verna
equinox of date at the Greenwich meridian (in radians).

INPUTS:
Table 6-84. PGS _TD_TAItoGAST Inputs

Name Description Units Min Max

secTAI93 continuous seconds since 12AM UTC Jan. 1, 1993 seconds -426297609.0 see NOTES

OUTPUTS:
Table 6-85. PGS _TD_TAItoGAST Outputs
Name Description Units Min Max
gast Greenwich Apparent Sidereal Time radians | O 2PI
RETURNS:
Table 6-86. PGS _TD TAItoGAST Returns
Return Description
PGS_S_SUCCESS Successful return
PGSCSC_W_PREDICTED_UT1 Status of UT1-UTC correction is predicted
PGSTD_E_NO_LEAP_SECS No leap seconds correction available for input time
PGSTD_E_NO_UT1_VALUE No UT1-UTC correction available
PGS _E_TOOLKIT Something radically wrong occured

6-235 333-CD-004-002

EXAMPLES: None
NOTES: TIME ACRONYMS:

GAST is: Greenwich Apparent Sidereal Time
TAI is: International Atomic Time

TOOLKIT INTERNAL TIME (TAI):

Toolkit internal time isthe real number of continuous Sl seconds since the
epoch of UTC 12 AM 1-1-1993. Toolkit internal timeisalso referred to in
thetoolkit as TAI (upon which it is based).See Section 6.2.7.4 Time and
Date Conversion Tool Notes

TIME BOUNDARIES:
See Section 6.2.7.5.2 (UT1-UTC Boundaries)

REFERENCESFOR TIME:CCSDS 2301.0-B-2 (CCSDS =>
Consultative Committee for Space Data Systems) Astronomical Almanac,
Explanatory Supplement to the Astronomical Almanac.

REQUIREMENTS: PGSTK-1170, PGSTK-1210

6-236 333-CD-004-002

Convert UTC Time to Spacecraft Clock Time

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

OUTPUTS:

PGS TD_UTC _to SCtime()

#include <PGS TD.h>

PGSt_SMF_status

PGS TD_UTC to_SCtime(
PGSt tag spacecraftTag,
char asciiuTC[28],
PGSt_scTime scTime[8]);

include' PGS_SMF.f’
include' PGS _TD.f’
include'PGS TD_3.f’

integer function pgs _td_utc_to_sctime(spacecrafttag, asciiutc, sctime)
integer Spacecrafttag
character*27 asciiutc
character*8 sctime

This tool converts UTC in CCSDS Time Code A or B to spacecraft clock
time in platform dependent format.

spacecraftTag-Spacecraft identifier; must be one of: PGSd TRMM,
PGSd_EOS AM, PGSd_EOS PM

asciilUTC-UTC time in CCSDS ASCII Time Code A or CCSDS ASCII
Time Code B format. The values of MAX, and MIN depend on the
spacecraft, see the files containing the specific conversions for more
information

scTime-Spacecraft clock time in platform dependent CCSDS format.
UNITS, MAX, and MIN depend on the spacecraft, see the files containing
the specific conversions for more information.

6-237 333-CD-004-002

RETURNS:

Table 6-87. PGS _TD UTCtoSCtime Returns

Return

Description

PGS_S_SUCCESS

Successful execution

PGSTD_E_SC_TAG_UNKNOWN

Unknown spacecraft tag

PGSTD_E_TIME_FMT_ERROR

Error in input time format

PGSTD_E_TIME_VALUE_ERROR

Error in input time value

PGSTD_E_DATE_OUT_OF_RANGE

Input date is out of range of s/c clock

PGSTD_E_NO_LEAP_SECS

Leap seconds correction unavailable at requested time

PGS_E_TOOLKIT

An unexpected error occurred

EXAMPLES:

C. char
PGSt _scTi ne
PGSt _SMF_st at us

asci i Utq 28] ;
scTi me[8] ;
ret urnSt at us;

strcpy(ascii UTC, "1995-02- 04T12: 23: 44. 1254382Z") ;

returnStatus =

PGS TD UTC to_SCti ne(PGSd_ECS AM asci i UTC

scTime);

if (returnStatus != PGS_S SUCCESS)

{

*** do sone error

}
FORTRAN: implicit none

i nt eger

handl i ng ***

pgs_td utc_to_sctine

character*27asciiutc

character*8
i nt eger

sctine
ret ur nst at us

asciiutc = ‘1995-02-04t 12: 23: 44. 1254387

returnstatus = pgs_td utc_to_sctinme(pgsd _eos_am ascii utc,

sctinme)

if (returnstatus .ne. pgs_s_success) then

c *** do sonme error

endi f

handl i ng ***

6-238 333-CD-004-002

NOTE: WARNING: To properly convert timesto or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). Thefollowing line MUST be contained in the PCF for any
process that is converting to or from TRMM s/c clock time:

10123[TRMM UTCF valuel<UTC VALUE>

Where the proper value of the UTCF should be substituted for
<UTCVALUE>.

There is no corresponding problem for AM1 clock time, which is specified
to have an accuracy of 100 microseconds.

UTCis: Coordinated Universal Time
See Section 6.2.7.2 (ASCII Time Formats)

The output spacecraft times vary in format. The supported spacecraft times are in the following
formats:

TRMM CUC (platform specific variant of CCSDS
Unsegmented time code(CUC) used)
EOS AM CDS (platform specific variant of CCSDS day
segmented time code (CDS) used)
EOS PM CucC

REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems) Astronomical Almanac, Explanatory Supplement to the
Astronomical Almanac

REQUIREMENTS: PGSTK- 1170

6-239 333-CD-004-002

Convert Spacecraft Clock Time to UTC Time

NAME: PGS TD_SCtime to UTC()
SYNOPSIS:
C #include <PGS TD.h>

PGSt_SMF_status

PGS _TD_SCtime_to UTC(
PGSt tag spacecraftTag,
PGSt_scTime scTime[][8],
PGSt_integer numValues,
char asciiuTC[28],
PGSt_double offsetd])

FORTRAN: include' PGS_SMF-.f’
include' PGS _TD.f’
include' PGS TD_3.f’

integer function pgs _td_sctime_to_utc(spacecrafttag,
sctime,numval ues,ascii utc,

offsets)
integer Spacecrafttag
character*8 sctime(*)
integer numvalues
character* 27 asciiutc

double precision offsets(*)

DESCRIPTION: This tool converts spacecraft clock time in platform dependent CCSDS
format to UTC in CCSDS ASCII Time Code A format.

INPUTS: spacecraftTag-Spacecraft identifier, must be one of: PGSd_TRMM,
PGSd EOS AM, PGSd_EOS PM

scTime-Array of spacecraft clock times in platform dependent CCSDS
format. UNITS, MAX, and MIN depend on the spacecraft, see the files
containing the specific conversions for more information.

numV alues-number of elements in the input scTime array (and therefore
the output offsets array)

6-240 333-CD-004-002

OUTPUTS:

Table 6-88. PGS _TD_SCtime_to_UTC Outputs
NAME DESCRIPTION UNITS

asciiuTC UTC time of first s/c clock time in input array (in CCSDS ASCII Time Code A format). The ASCII
values of MAX, and MIN depend on the spacecraft, add values from prologs!

offsets Array of offsets of each input s/c clock time in input array scTime relative to the first time in seconds
the array. This includes the first time as well (i.e., the first offset will be 0.0). The values of
MAX, and MIN depend on the first time as well the spacecraft. Add values from prologs!

RETURNS:
Table 6-89. PGS TD SCtime to UTC Returns
Return Description
PGS_S SUCCESS successful execution
PGSTD_W_BAD_SC_TIME one or more input s/c times could not be deciphered
PGSTD_E_BAD_INITIAL_TIME the initial input s/c time (first time in input array) could not be deciphered
PGSTD_E_SC_TAG_UNKNOWN unknown/unsupported spacecraft ID tag
PGS_E_TOOLKIT an unexpected error occurred
EXAMPLES:
C. #def i ne ARRAY_SI ZE 1000
PGSt _scTi e scTi me[ARRAY_SI ZE] [8] ;
char asci i Utq 28] ;
PGSt _doubl e of f set s[ARRAY_SI ZF] ;
PGSt _SMF_st at us returnStatus;
*** Initialize scTine array ***
returnStatus = PGS _TD SCtine_to UTC(PGSd_ECS AM scTi ne,
ARRAY_SI ZE, asci i UTC,
of fsets);
if (returnStatus != PGS_S SUCCESS)
{
*** do sone error handling ***
}
FORTRAN: inmplicit none
i nt eger pgs _td sctinme_to_utc
i nt eger array_size
character*8 sctime(array_size)

character*27asciiutc

6-241 333-CD-004-002

NOTES:

doubl e precision offsets(array_size)
i nt eger returnst at us

*** |nitialize sctine array ***

returnstatus = pgs_td_sctine_to_utc(pgsd_eos_am scti ne,
array_si ze, asciiutc,
of fsets)

if (returnstatus .ne. pgs_s_success) then

*** do sone error handling ***

endi f

WARNING: To properly convert timesto or from TRMM s/c clock time
the value of the TRMM Universal Time Correlation Factor (UTCF) must
be known. This value must be supplied by the user in the Process Control
File (PCF). Thefollowing line MUST be contained in the PCF for any
process that is converting to or from TRMM </c clock time:

10123[TRMM UTCF valuel<UTC VALUE>

Where the proper value of the UTCF should be substituted for
<UTC VALUE>.

Thereis no corresponding problem for AM 1 clock time, which is specified
to have an accuracy of 100 microseconds.

This function converts an array of input s/c times to an initial time and an
array of offsets relative to this initial time. If the first time in the input
array cannot be deciphered, this function returns an error. If any other time
in the input array cannot be deciphered, the corresponding offset is set to
PGSd_ GEO _ERROR_VALUE and this function continues after setting
the return value to awarning.

See Section 6.2.7.2 (ASCII Time Formats)

The input spacecraft times vary in format. The supported spacecraft times
arein the following formats:

TRMM CUC (platform specific variant of CUC used)
EOS AM CDS (platform specific variant of CDS used)
EOS PM CucC

UTC: Coordinated Universal Time

TAIl: International Atomic Time

CUC: CCSDS Unsegmented Time Code
CDS CCSDS Day Segmented Time Code

REQUIREMENTS: PGSTK-1170

6-242 333-CD-004-002

Convert CCSDS ASCII Time Format A to Format B

NAME: PGS TD_ASCIItime_AtoB()
SYNOPSIS:
C: #include <PGS_TD.h>

PGSt SMF_status
PGS _TD_ASClItime_AtoB(

char asciiUTC_A[28],
char asciiUTC _B[27]);

FORTRAN: include' PGS_SMF-.f’
include' PGS TD_3.f’

integer function pgs td asciitime_atob(asciiutc_a,asciiutc_b);

character*27 asciiutc_a
character*26 asciiutc_b

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code A to CCSDS
ASCII| Time Code B.

INPUTS:
Table 6-90. PGS _TD_ASCIitime_AtoB Inputs
Name Description Units Min Max
asciilUTC_A | UTC Time in CCSDS ASCII Time Code A | N/A N/A N/A
OUTPUTS:
Table 6-91. PGS _TD_ASClitime_AtoB Outputs
Name Description Units Min Max
asciuUTC_B UTC Time in CCSDS ASCII Time Code B | N/A N/A N/A
RETURNS:

Table 6-92. PGS _TD _ASCIitime_AtoB Returns

Return

Description

PGS_S_SUCCESS

Successful return

PGSTD_E_TIME_VALUE_ERROR Error in input time value

PGSTD_E TIME_FMT_ERROR Error in input time format

PGS_E_TOOLKIT

Something unexpected happened, execution of function
terminated prematurely

6-243 333-CD-004-002

EXAMPLES:

C: PGSt _SMF_st at us r et ur nVal ue;
char asci i UTC_A[28] ;
char asci i UTC_B[27];

strcpy(ascii UTC_A, ”1998- 06- 30T10: 51: 28. 3200002) ;

returnVal ue = PGS TD ASCl Itine_AtoB(ascii UTC A ascii UTC B);
if (returnValue != PGS S SUCCESS)

{

** test errors, take appropriate action **

}
printf(“%\n”,asciiUTC B);
FORTRAN: implicit none
i nt eger pgs_td_asciitinme_atob
i nt eger returnval ue

character*27asciiutc_a
character*26asciiutc_b

asciiutc_a = '1998-06-30T10: 51: 28. 320000’

returnval ue = pgs_td_asciitine_atob(asciiutc_a,asciiutc_b)
if (returnvalue .ne. pgs_s_success) goto 999

wite(6,*) asciiutc_b

NOTES: The output of thistool isin CCSDS ASCII Time Code B format.
See Section 6.2.7.2 (ASCII Time Formats)
REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

6-244 333-CD-004-002

Convert CCSDS ASCII Time Format B to Format A

NAME: PGS TD_ASCIItime BtoA()

SYNOPSIS:
C:

#include <PGS_TD.h>

PGSt SMF_status
PGS _TD_ASCIItime_BtoA(

FORTRAN:

char asciiUTC_B[27],
char asciiUTC_A[28]);

include' PGS_SMF.f’
include'PGS TD_3.f’

integer function pgs td asciitime_btoa(asciiutc_b,asciiutc_a);

character*26 asciiutc_b
character*27 asciiutc_a

DESCRIPTION: This Tool converts UTC time in CCSDS ASCII Time Code B to CCSDS
ASCIl Time Code A.

INPUTS:
Table 6-93. PGS_TD_ASClitime_BtoA Inputs
Name Description Units Min Max
asciilUTC_B UTC Time in CCSDS ASCII Time Code B | N/A N/A N/A
OUTPUTS:
Table 6-94. PGS _TD_ASCIitime_BtoA Outputs
Name Description Units Min Max
asciuUTC_A UTC Time in CCSDS ASCII Time Code A | N/A N/A N/A
RETURNS:

Table 6-95. PGS _TD ASCIitime BtoA Returns

Return

Description

PGS_S_SUCCESS

Successful return

PGSTD_E_TIME_VALUE_ERROR Error in input time value

PGSTD_E_TIME_FMT_ERROR Error in input time format

PGS_E_TOOLKIT

Something unexpected happened, execution of function
terminated prematurely

6-245 333-CD-004-002

EXAMPLES:

C: PGSt _SMF_st at us r et ur nVal ue;
char asci i UTC B[27];
char asci i UTC_A[28] ;

strcpy(ascii UTC B, ”"1998-181T10: 51: 28. 3200002") ;

returnVal ue = PGS TD ASCl Itine_BtoA(ascii UTC B, ascii UTC_A);
if (returnValue != PGS S SUCCESS)

{

** test errors, take appropriate action **

}
printf(“%\n”,ascii UTC A);
FORTRAN: implicit none
i nt eger pgs_td_asciitime_btoa
i nt eger returnval ue

character*26asciiutc_b
character*27asciiutc_a

asciiutc_b = *1998-181T10: 51: 28. 320000’

returnval ue = pgs_td_asciitine_btoa(asciiutc_b,asciiutc_a)
if (returnvalue .ne. pgs_s_success) goto 999

wite(6,*) asciiutc_a

NOTES: The output of thistool isin CCSDS ASCII Time Code A format.
See Section 6.2.7.2 (ASCII Time Formats)
REQUIREMENTS: PGSTK-1170, PGSTK-1180, PGSTK-1210

6-246 333-CD-004-002

Convert UTC to GPS Time

NAME: PGS TD_UTCtoGPY()
SYNOPSIS:
C:
#include <PGS_TD.h>
PGSt SMF_status
PGS TD_UTCtoGPS(
char asciiuTC[28],
PGSt _double *secGPS);
FORTRAN: include' PGS _SMF-.f’
include' PGS TD_3.f’
integer function pgs td_utctogps(asciiUTC,secgps)
character* 27 asciiutc
double precision secgps
DESCRIPTION: Thistool converts from UTC time to GPS time.
INPUTS:
Table 6-96. PGS _TD_UTCtoGPS Inputs
Name Description Units Min Max
asciiuTC UTC time in CCSDS ASCII Time Code time 1961-01-01 T00:00:00 2008-03-30
A or B format T23:59:59.999999
OUTPUTS:
Table 6-97. PGS _TD _UTCtoGPS Outputs
Name Description Units Min Max
secGPS Continuous real seconds since 0 hrs seconds -599961636.577182 890956802.999999
UTC on Jan. 6, 1980
RETURNS:

Table 6-98. PGS _TD_UTCtoGPS Returns

Return

Description

PGS_S_SUCCESS

Successful return

PGSTD_E_NO_LEAP_SECS

No leap seconds correction available input time

PGSTD_E_TIME_FMT_ERROR

Error in format of ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR

Error in value of the ASCII UTC time

PGS_E_TOOLKIT

Something unexpected happened, execution of function terminated prematurely

6-247

333-CD-004-002

EXAMPLES:

C: char asci i Ut 28] ;
PGSt _doubl e secGPS;
PGSt _SMF_st at us returnStatus;
char err[PGS_SM-_MAX_MNEMONI C S| ZE]
char msg[PGS_SMF_NMAX_MSG_SI ZE]

returnStatus = PGS_TD UTCt oGPS(asci i UTC, &ecGPS) ;
if(returnStatus != PGS_S SUCCESS)
{
PGS SMF_Get Msg(&returnStatus, err, msg);
printf(“\n ERROR %", nBQ);
}

FORTRAN: inmplicit none
i nt eger pgs_td_utctogps

character*27asciiutc
doubl e precision secgps

i nt eger returnstatus
i nt eger anerror

char act er *35er r nane
character*150 errmsg

returnstatus = pgs_td_utctogps(asciiutc, secgps)
if(returnstatus .ne. PGS S SUCCESS) then
returnstatus = pgs_snf_getnsg(anerror, errornamne, errnsg)
wite(*,*) errnane, errnsg
endi f

NOTES: See Section 6.2.3.2 (ASCII Time Formats)
See Section 6.2.7.5.1 (TAI-UTC Boundaries)

GPS:. Global Positioning System
TAIl: International Atomic Time
UTC: Coordinated Universa Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

6-248 333-CD-004-002

Convert GPSto UTC Time

NAME: PGS TD_GPStoUTC()
SYNOPSIS:

C:
#include <PGS_TD.h>

PGSt SMF_Status
PGS _TD_GPStoUTC(
PGSt _double secGPS,

char asciiuTC[28]);
FORTRAN:
include' PGS_SMF.f’
include'PGS TD_3.f’
integer function pgs td gpstoutc(secgps, asciiutc)
double precision secgps
character* 27 asciiutc
DESCRIPTION: Thistool converts from GPStimeto UTC time.
INPUTS:

Table 6-99. PGS _TD_GPStoUTC Inputs
Name Description Units Min Max

secGPS Continuous real seconds since 0 hrs | seconds -599961636.577182 | see NOTES
UTC on Jan. 6, 1980

OUTPUTS:
Table 6-100. PGS _TD_GPStoUTC Outputs
Name Description Units Min Max
asciiluTC UTC time in CCSDS ASCII Time Code A time | 1961-01-01 see NOTES
RETURNS:
Table 6-101. PGS _TD GPStoUTC Returns
Return Description
PGS_S SUCCESS Successful return
PGSTD_E NO_LEAP_SECS No leap seconds correction for input time
PGS_E_TOOLKIT Something unexpected happened, execution of function terminated
prematurely
EXAMPLES:

6-249 333-CD-004-002

C. char asci i UtC 28] ;

PGSt _doubl e secGPS;

PGSt _SMF_st at us returnStatus;

char err[PGS_SMF_NMAX_MNEMONI C S| ZE]
char msg[PGS_SMF_NMAX_MSG_SI ZE]

returnStatus = PGS_TD_GPSt oUTC(secGPS, asci i UTC) ;
if(returnStatus != PGS_S SUCCESS)
{
PGS _SMF_Get Msg(& eturnStatus, err, msg);
printf(“\n ERROR %", nsQ);
}

FORTRAN: implicit none
i nt eger pgs_td_gpstoutc

character*27asciiutc
doubl e precision secgps

i nt eger retur nst at us

i nt eger anerror

char act er *35er r nanme

charact er*150 errmsg

returnstatus = pgs_td _gpstoutc(secgps, ascii UTC)

if(returnstatus .ne. PGS_S SUCCESS) then
returnstatus = pgs_snf_getnsg(anerror, errornamne, errmnsg)
wite(*,*) errnane, errnsg

endi f

NOTES: See Section 6.2.3.2 (ASCII Time Formats)
See Section 6.2.7.5.1 (TAI-UTC Boundaries)

GPS: Globa Positioning System
TAIl: International Atomic Time
UTC: Coordinated Universa Time

REQUIREMENTS: PGSTK-1170, PGSTK-1210

6-250 333-CD-004-002

Convert UTC Time to TDT Time

NAME: PGS TD_UTCtoTDTjed()
SYNOPSIS:
C #include <PGS TD.h>
PGSt SMF_status
PGS TD_UTCtoTDTjed(
char asciiuTC[28],
PGSt_double jedTDT[2));
FORTRAN: include' PGS_SMF.f’
include'PGS TD_3.f’
integer function pgs td_utctotdtjed(asciiutc, jedtdt)
character* 27 asciiutc
double precision jedtdt(2)
DESCRIPTION: Thistool converts UTC in CCSDS ASCII timeformat A or B to TDT asa
Julian date (TDT = Terrestrial Dynamical Time)
INPUTS:
Table 6-102. PGS _TD _UTCtoTDTjed Inputs
Name Description Units Min Max
asciiuTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES
OUTPUTS:
Table 6-103. PGS _TD _UTCtoTDTjed Outputs
Name Description Units Min Max
jedTDT TDT as a Julian date days see NOTES see NOTES
RETURNS:

Table 6-104. PGS _TD _UTCtoTDTjed Returns

Return

Description

PGS_S_SUCCESS

Successful return

PGSTD_E_TIME_FMT_ERROR

Error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCIl UTC time

PGSTD_E_NO_LEAP_SECS Leap second errors

PGS_E_TOOLKIT

prematurely

Something unexpected happened, execution of function terminated

6-251

333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

PGSt _SMF_st at us returnSt at us;

char asci i Ut 28] =
“2002-06-30T11: 04: 57. 98765427 ;

PGSt _doubl e j edTDT[2] ;

char err[PGS_SM-_MAX_MNEMONI C S| ZE]

char msg[PGS_SMF_NMAX_MSG_SI ZE]

returnStatus=PGS_TD UTCt oTDTj ed(asci i UTC, j edTDT);
if (returnStatus !'= PGS_S SUCCESS)

{
PGS SMF_Get Msg(& et urnSt at us, err, msg) ;
printf(“\nERROR %", nsQ)
}
inmplicit none
i nt eger pgs_td utctotdtjed
i nt eger retur nst at us

character*27asciiutc

doubl e precision jedtdt(2)
character*33 err
character*241 nsg

asciiutc = ‘1998-06-30T10: 51: 28. 3200002’

returnstatus = pgs_td_utctotdtjed(asciiutc,jedtdt)

if (returnstatus .ne. pgs_s_success)
returnstatus = pgs_snf_getnsg(returnstatus, err, nsg)
wite(*,*) err, nsg

endi f

TIME ACRONYMS:

TDT is: Terrestrial Dynamical Time
UTCis: Coordinated Universal Time

Prior to 1984, there is no distinction between TDT and TDB; either one is denoted “ephemeris

time” (ET). Also, the values before 1972 are based on U.S. Naval
Observatory estimates, which are the same as adopted by the JPL
Ephemeris group that produces the DE series of solar system ephemerides,
such as DE200.

Section 6.2.7.4 (Toolkit Julian Dates)
See Section 6.2.7.2 (ASCII Time Formats)

See See Section 6.2.7.5.1 (TAI-UTC Boundaries)

6-252 333-CD-004-002

REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

6-253 333-CD-004-002

Convert UTC Time to TDB Time

NAME: PGS TD_UTCtoTDBjed()
SYNOPSIS:
C #include <PGS TD.h>
PGSt SMF_status
PGS TD_UTCtoTDBjed(
char asciiuTC[28],
PGSt_double jedTDB[2));
FORTRAN: include' PGS_SMF.f’
include'PGS TD_3.f’
integer function pgs _td_utctotdbjed(asciiutc, jedtdb)
character* 27 asciiutc
double precision jedtdb(2)
DESCRIPTION: Thistool converts UTC in CCSDS ASCII timeformat A or B to TDB asa
Julian date (TDB = Barycentric Dynamical Time)
INPUTS:
Table 6-105. PGS _TD_UTCtoTDBjed Inputs
Name Description Units Min Max
asciiuTC UTC time in CCSDS ASCII time Code A or B format time 1961-01-01 see NOTES
OUTPUTS:
Table 6-106. PGS _TD_UTCtoTDBjed Outputs
Name Description Units Min Max
jedTDB TDB as a Julian date days see NOTES see NOTES
RETURNS:
Table 6-107. PGS _TD _UTCtoTDBjed Returns
Return Description

PGS_S_SUCCESS

Successful return

PGSTD_E_TIME_FMT_ERROR

Error in format of input ASCII UTC time

PGSTD_E_TIME_VALUE_ERROR

Error in value of input ASCIl UTC time

PGSTD_E_NO_LEAP_SECS Leap second errors

PGS_E_TOOLKIT

prematurely

Something unexpected happened, execution of function terminated

6-254

333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

PGSt _SMF_st at us returnStatus;

char asci i UrC[28] =
“2002-02-23T11: 04: 57.9876542";

PGSt _doubl e j edTDB[2] ;

char err[PGS_SMF_NMAX_MNEMONI C S| ZE]

char nsg[PGS_SM-_MAX_MSG_SI ZE]

returnStatus=PGS_TD UTCt oTDBj ed(asci i UTC, j edTDB) ;
if (returnStatus != PGS_S SUCCESS)

{
PGS _SMF_Get Msg(& et urnSt at us, err, nmsg) ;
printf(“\nERROR %", nsQ)
}
inmplicit none
i nt eger pgs_td_utctotdbjed
i nt eger returnstatus

character*27asciiutc
doubl e precision jedtdb(2)
character*33err
character*241 nsg

asciiutc = *1998-06-30T10: 51: 28. 3200002’

returnstatus = pgs_td_utctotdbjed(asciiutc,]edtdb)

if (returnstatus .ne. pgs_td_utctotdbjed(asciiutc,jedtdb)
returnstatus = pgs_snf_getnsg(returnstatus, err, nsg)
wite(*,*) err, nsg

endi f

TIME ACRONYMS:

TDB is: Barycentric Dynamical Time
UTC is: Coordinated Universal Time

Prior to 1984, there is no distinction between TDT and TDB; either oneis
denoted “ephemeristime’ (ET). Also, the values before 1972 are based on
U.S. Naval Observatory estimates, which are the same as adopted by the
JPL Ephemeris group that produces the DE series of solar system
ephemerides, such as DE200.

See Section 6.2.7.2 (ASCII Time Formats)
See Section 6.2.7.4 (Toolkit Julian Dates)
See Section 6.2.7.5.1 (TAI-UTC Boundaries)

6-255 333-CD-004-002

REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

6-256 333-CD-004-002

Compute Elapsed TAI Time

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

PGS TD_Timelnterval()

#include <PGS TD.h>

pgs_status

PGS TD_Timelnterval(
PGSt_double startTAl,
PGSt_double stopTAl,
PGSt_double *interval)

include' PGS _SMF-.f’
include' PGS TD_3.f’

integer function pgs _td_timeinterval (starttai, stoptai, interval)
double precision starttai
double precision stoptai
double precision interval

This function computes the elapsed TAI time in seconds between any two

timeintervals

Table 6-108. PGS_TD_Timelnterval Inputs

Name

Description

Units Min

Max

startTAl

start time in TAI

seconds none

none

stopTAl

stop time in TAl

seconds none

none

OUTPUTS:

Name

Description

Table 6-109. PGS_TD_Timelnterval Outputs

Units Min

Max

interval

elapsed time interval

seconds none

none

RETURNS:

Table 6-110. PGS _TD_Timelnterval Returns

Return

Description

PGS_S_SUCCESS

Successful return

6-257

333-CD-004-002

EXAMPLES:

C: PGSt _SMF_st at us returnSt at us;
PGSt _doubl e start TAl ;
PGSt _doubl e st opTAI;
PGSt _doubl e i nterval ;

start TAl = 34523.5;
st opTAl = 67543. 2;
returnStatus = PGS _TD Ti nel nterval (start TAl, st opTAl,

& nterval);
FORTRAN: implicit none
i nt eger pgs_td_timeinterval
i nt eger returnstatus

doubl e precision startt ai
doubl e precision stoptai
doubl e precision interval

returnstatus = pgs_td_tineinterval (starttai,stoptai,
i nterval)

NOTES: Thisinterval isthe same as elapsed internal time and is the true interval in
System International (SI) seconds.

REQUIREMENTS: PGSTK-1190

6-258 333-CD-004-002

Convert UTC in CCSDS ASCII Format to Julian Date Format

NAME: PGS TD_UTCtoUTCjd()
SYNOPSIS:
C #include <PGS TD.h>

PGSt SMF_status

PGS TD_UTCtoUTCjd(

char asciiuTC[28],
PGSt_double jdUTC[2])

FORTRAN: include ‘PGS _SMF.f’

include ‘PGS TD_3.f’

integer function pgs_td_utctoutcjd(asciiutc, jdutc)

character* 27 asciiutc

double precision jdutc(2)
DESCRIPTION: Converts ASCII UTC timesto UTC Julian Dates
INPUTS.

Table 6-111. PGS _TD _UTCtoUTCjd Inputs
Name Description Units Min Max
asciuTC UTC time in CCSDS time 1961-01-01 see NOTES

ASCII time Code A or B

format
OUTPUTS:

Table 6-112. PGS _TD _UTCtoUTCjd Outputs

Name Description Units Min Max
jdUTCI2] UTC Julian date days none none

RETURNS:

Table 6-113. PGS _TD_UTCtoUTCjd Returns

Return

Description

PGS_S_SUCCESS

successful return

PGSTD_M_LEAP_SEC_IGNORED

leap second portion of input time discarded

PGSTD_E_TIME_FMT_ERROR

error in format of input ASCIl UTC time

PGSTD_E_TIME_VALUE_ERROR

error in format of input ASCII UTC time

PGS_E_TOOLKIT

something unexpected happened, execution aborted

6-259 333-CD-004-002

NOTES: Caution should be used because UTC Julian Date jumps backwards each

time a leap second is introduced. Therefore, in aleap second interval the
output times will repeat those in the previous second (provided that the
UTC ASCII seconds field ran from 60.0 to 60.9999999 etc. as they should
during that one second). Therefore, the only known uses for this function
are:
(a) to get UT1, (after conversion to modified Julian Date by subtracting
2400000.5) by accessing an appropriate table of differences
(b) to determine the correct Julian Day at which to access any table based
on UTC and listed in Julian date, such as leap seconds, UT1, and polar
motion tables.

UTC is: Coordinated Universal Time
See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1170, 1220

6-260 333-CD-004-002

Convert UTC Julian Date to CCSDS ASCII Time Code A Format

NAME: PGS TD_UTCjdtoUTC()
SYNOPSIS:
C: #include <PGS_TD.h>
PGSt SMF_status
PGS TD_UTCjdtoUTC(
PGSt_double jdUTC[2],
PGSt_boolean onL eap,
char asciiuTC[28])
FORTRAN: include ‘PGS _SMF.f’
include ‘PGS TD_3.f’
integer function pgs_td_utcjdtoutc(jdutc,onleap,asciiutc)
double precision jdutc(2)
integer onleap
character* 27 asciiutc
DESCRIPTION: Thistool converts UTC as a Julian date to UTC in CCSDS ASCII Time
Code A format.
INPUTS:
Table 6-114. PGS _TD UTCjdtoUTC Inputs
Name Description Units
jduTC UTC time as a Julian date days
onLeap Indicates if input time is occurring during a leap second TIF
OUTPUTS:
Table 6-115. PGS _TD _UTCjdtoUTC Outputs
Name Description Units
asciluTC UTC time in CCSDS ASCII Time Code A format time
RETURNS:
Table 6-116. PGS _TD _UTCjdtoUTC Returns
Return Description
PGS_S_SUCCESS successful return
PGSTD_E_TIME_FMT_ERROR | aleap second was indicated at an inappropriate time
PGS_E_TOOLKIT something unexpected happened

6-261 333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

PGSt _SMF _status returnStatus;

PGSt _doubl e j duTtd 2] ={2449534. 5, 0. 5};

char asci i Utq 28] ;

returnStatus = PGS_TD UTQ dt oUTC(j dUTC, PGS_FALSE, asci i UTC);

if (returnStatus != PGS_S SUCCESS)
{

*** do sonme error handling ***

}

/* ascii UTC now contai ns the val ue:
“1994-07-01T12: 00: 00. 000000Z" */

printf(“UTC %\n”, ascii UTC);
i nt eger pgs_td utcjdtoutc
i nt eger retur nst at us

doubl e precision jdutc(2)

character*27 asciiutc
jdutc(1) = 2449534.5D0
jdutc(1) = 0.5D0

returnstatus = pgs_td_utcjdtoutc(jdutc, pgs_false, asciiutc)
if (returnstatus .ne. pgs_s_success) goto 999

I asciiutc now contains the val ue:
I ©1994-07-01T12: 00: 00. 0000007

wite(6,*) ‘UTC. ‘, asciiutc
UTCis: Coordinated Universal Time
REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data
Systems)

Astronomical Almanac, Explanatory Supplement to the Astronomical
Almanac

See section 6.2.7.4 (Toolkit Julian Dates)

REQUIREMENTS: PGSTK - 1210, 1220, 1160, 1170

6-262 333-CD-004-002

Convert UTCto UT1

NAME:
SYNOPSIS:
C:

FORTRAN:

PGS TD_UTCtoUT1()

#include <PGS_CSC.h>
#include <PGS_TD.h>

PGSt SMF_status

PGS TD_UTCtoUTL(
char asciiuTC[28],
PGSt _double *secUTL);

include' PGS _SMF-.f’
include' PGS TD_3.f’
include' PGS _CSC _4.f

integer function pgs td_utctoutl1(asciiutc, secutl)

character* 27 asciiutc
double precision secutl
DESCRIPTION: This tool converts a time from CCSDS ASCII Time (Format A or B) to
UT1l
INPUTS:
Table 6-117. PGS _TD UTCtoUT1 Inputs
Name Description Units Min Max
asciilUTC [UTC time in CCSDS ASCII time | 1979-06-30T00:00:00 also see notes Date
Time Code A or B format
OUTPUTS:
Table 6-118. PGS _TD UTCtoUT1 Outputs
Name Description Units Min Max
secUT1 UT1 in seconds from midnight | sec 0.0 86400.999999
RETURNS: PGS S SUCCESS

PGSTD_E_TIME_FMT_ERROR
PGSTD_E_TIME_VALUE_ERROR
PGSCSC_W_PREDICTED UT1
PGSTD_E_NO_UT1 VALUE

PGS E_TOOLKIT

6-263 333-CD-004-002

EXAMPLES:
C:

FORTRAN:

NOTES:

PGSt _SMF_st at us returnStatus

char asci i UTC[28] = “2002-07-27T11: 04: 57.987654Z
PGSt _doubl e secUT1

char err[PGS_SMF_NMAX_MNEMONI C SI ZE]

char nsg[PGS_SMF_NMAX MSG_SI ZE]

returnStatus=PGS_TD UTCt oUT1(ascii UTC, &ecUT1)
if (returnStatus != PGS_S SUCCESS)
{
PGS _SMF_Get Msg(& et urnSt at us, err, msg) ;
printf(“\nERROR %", nsQ)
}

inmplicit none

i nt eger pgs_td_utctoutl
i nt eger returnstatus
character*27asciiutc

doubl e precision secutl
character*33 err
character*241 nsg

asciiutc = *2002-07-27T11: 04: 57. 98765472

returnstatus = pgs_td_utctoutl(asciiutc,secutl)

if (returnstatus .ne. pgs_s_success) then
returnstatus = pgs_snf_getnsg(returnstatus, err, nsg)
wite(*,*) err, nsg

endi f

Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 isameasure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SlI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST). This function should be used
with caution near midnight. For example, if UTC is 0.5 seconds before
midnight, and UT1 - UTC = 0.6 s, then this function returns 0.1 s, but the
day has changed.

Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called
UT2 that accounts for some of the periodic nonuniformities of Earth
rotation, were used for time keeping.

6-264 333-CD-004-002

TIME ACRONYMS:

UTlis: Universal Time
UTCis: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)
See Section 6.2.7.5.2 (UT1-UTC Boundaries)
REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems), Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1215

6-265 333-CD-004-002

Convert UTC to UT1 Julian Date

NAME:
SYNOPSIS:
C:

FORTRAN:

DESCRIPTION:

INPUTS:

PGS _TD_UTCtoUT1jd()

#include <PGS TD.h>

PGSt SMF_status

PGS TD_UTCtoUT1jd(
char asciiuTC[28],
PGSt_double jdUuT1[2])

include' PGS _SMF-.f’
include' PGS CSC 4.f
include' PGS TD_3.f’

integer function pgs td_utctoutljd(asciiutc, jdutl)
character* 27 asciiutc
double precision jdutl(2)

This tool converts a time from CCSDS ASCII Time (Format A or B) to

Julian date.

Table 6-119. PGS _TD _UTCtoUTI1jd Inputs

Name

Description

Units

asciuTC

UTC time in CCSDS ASCII Time Code A format or ASCII Time Code B format

ASCII

OUTPUTS:

Table 6-120. PGS _TD UTCtoUTI1jd Outputs

Name

Description

Units

jduT1

UT1 Julian date as two real numbers, the first a half integer number of days and the
second the fraction of a day between this half integer number of days and the next
half integer day number.

days

RETURNS:

Table 6-121. PGS _TD UTCtoUTI1jd Returns

Return Description

PGS_S_SUCCESS

Successful execution

PGSTD_M_LEAP_SEC_IGNORED Leap second portion of input time discarded
PGSTD_E_TIME_FMT_ERROR Error in format of input ASCII UTC time
PGSTD_E_TIME_VALUE_ERROR Error in value of input ASCII UTC time

PGS_E_TOOLKIT

Something unexpected happened, execution aborted

6-266

333-CD-004-002

EXAMPLES: None

NOTES: Although UT1 was used for civil timekeeping before Jan. 1, 1972, today
UT1 isameasure of Earth rotation only; it is a measure of the angle of the
Greenwich Meridian from the equinox of date such that 24 hours of
System International (SI) seconds (86400 seconds) of TAI or TDT
constitute one full revolution. As such, it can be directly reduced to
Greenwich Apparent Sidereal Time (GAST).

Prior to Jan. 1, 1972, either UT1 or, for a brief period, a variant called
UT2 that accounts for some of the periodic nonuniformities of Earth
rotation, were used for time keeping.

TIME ACRONYMS:

UTlis; Universal Time
UTCis: Coordinated Universal Time

See Section 6.2.7.2 (ASCII Time Formats)
See Section 6.2.7.4 (Toolkit Julian Dates)
See Section 6.2.7.5.2 (UT1-UTC Boundaries)
REFERENCESFOR TIME:

CCSDS 301.0-B-2 (CCSDS => Consultative Committee for Space Data Systems) Astronomical
Almanac, Explanatory Supplement to the Astronomical Almanac

REQUIREMENTS: PGSTK-1170, PGSTK-1210

6-267 333-CD-004-002

Get Leap Second

NAME: PGS TD_LeapSec()
SYNOPSIS:
C #include <PGS TD.h>

PGSt_SMF_status

PGS _TD_LeapSec(
PGSt_double jdUTC[2],
PGSt_double *leapSec,
PGSt_double *lastChangelD,
PGSt_double *nextChangelD,
char *|eapStatus)

FORTRAN include ‘PGS _SMF-.f’
include ‘PGS TD_3.f’

integer funtion pgs _td_leapsec(jdutc,leapsec,|astchange d,nextchangeid,

leapstatus
double precision jdutc(2)
double precision leapsec
double precision lastchangejd
double precision nextchangejd
character*10 leapstatus

DESCRIPTION: Thistool accesses the file ‘leapsec.dat’, extracts the leap second value for
an input Julian Day number, and returns an error status.

INPUTS:
Table 6-122. Get Leap Second Inputs
Name Description Units Min Max
jduTC UTC Julian Day number days (see NOTES) N/A N/A
OUTPUTS:
Table 6-123. Get Leap Second Outputs
Name Description Units Min Max
leapSec leap second value for day seconds 0 N/A
jdUTC, read from table
lastChangeJD | Julian Day number upon which that leap second value was effective | days (see NOTES) | N/A N/A
nextChangeJD | Julian Day number of the next ACTUALor PREDICTED leap second | days (see NOTES) | N/A N/A
leapStatus indicates whether the leap second value is ACTUAL, PREDICTED, N/A N/A N/A
a LINEARFIT, or ZEROLEAPS (leap second value is set to zero if
the input time is before the start of the table)

6-268 333-CD-004-002

RETURNS:

Table 6-124. Get Leap Seconds Returns

Return Description
PGS S SUCCESS successful execution
PGSTD W_JD OUT_OF_ RANGE invalid input Julian Day number
PGSTD_W_DATA FILE_MISSING leap second file not found
EXAMPLES:

PGSt _doubl e jdutq 2] ;

PGSt _doubl e | eapsecond;

PGSt _doubl e | ast ChangeJD;

PGSt _doubl e next ChangeJD;

NOTES:

PGSt _SMF_st at us returnSt at us;

char | eapSt at us[10] ;
j duTC 0] = 2439999. 5;
jdurc 1] = 0.5;

returnStatus = PGS _TD LeapSec(j dUTC, & eapsecond,
&l ast ChangeJD,
&next ChangeJD, | eapSt at us) ;

if (returnStatus != PGS _S SUCCESS)
{

/* handle errors */

}

With Toolkit 5.2, the functions that call PGS _TD_L eapSec() will return an error
and write a diagnostic message to the Log Status File indicating that an obsolete
format was encountered in the Leap Secondsfile, if they encounter the

“PREDICTED” status.

UTC: Coordinated Universal Time
TAI: International Atomic Time

REQUIREMENTS: PGSTK - 1050, 0930

6-269

333-CD-004-002

6.2.7.8 TD Functions
PGS TD_ADEOSIItoTAl

This tool converts ADEOS-1I s/c clock time (instrument time + pulse time) to TAI (prototype
code).

PGS _TD_ADEOSIItoUTC

This tool converts converts ADEOS-1I s/c clock time (instrument time + pulse time) to aUTC
string in CCSDS ASCII Time Code A format (prototype code).

PGS TD_ASCIItime AtoB

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_ASClItime BtoA

See descriptionin 6.2.7.7 Time and Date Conversion Tools.
PGS TD_EOSAMtOTAI

This function converts EOS AM spacecraft clock time in CCSDS day segmented Time Code
(CDYS) (with implicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-
1993).

PGS TD_EOSAMtoUTC

This function converts EOS AM spacecraft clock time in platform-dependent format to UTC in
CCSDS ASCII time code A format.

PGS TD_EOSPMtoTAl

This function converts EOS PM spacecraft clock time in CCSDS Unsegmented Time Code
(CUC) (with explicit P-field) format to TAI (as real continuous seconds since 12AM UTC 1-1-
1993).

PGS _TD_EOSPMtoUTC

This function converts EOS PM spacecraft clock time in CCSDS unsegmented Time Code
(CUC) (with explicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS TD_FGDCtoUTC

This function converts an FGDC ASCI|I date string and time string to CCSDS ASCII Time Code
(format A). Theinput FGDC time string may be in “Universal Time” or “local time” format.

PGS TD_GPStoUTC

See descriptionin 6.2.7.7 Time and Date Conversion Tools.

6-270 333-CD-004-002

PGS _TD_ISOinttoTAl
This function converts an integer number that represents an SO time (YYMMDDhh) to TAI.
PGS TD ISOinttoUTCjd

This function converts an integer number that represents an SO time (YYMMDDhh) to aUTC
timein toolkit Julian date format.

PGS TD_JDtoMJD

This function converts a Julian date to amodified Julian date.

PGS TD JDtoTJD

This function converts a Julian date to a truncated Julian date.

PGS TD_JulianDateSplit

This function converts a Julian date to Toolkit Julian date format

PGS TD_LeapSec

See descriptionin 6.2.7.7 Time and Date Conversion Tools.

PGS TD_MJDtoJD

This function converts amodified Julian date to a Julian date.

PGS TD_PB5CtoUTCjd

This function converts atime in PB5C time format to TAI (Toolkit internal time).
PGS TD_PB5toTAl

This function converts atime in PB5 time format to TAI (Toolkit internal time).
PGS TD_PB5toUTCjd

This function converts atime in PB5 time format to UTC timein toolkit Julian date format.
PGS TD SCtime to UTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS TD_TAIljdtoTAl

See descriptionin 6.2.7.7 Time and Date Conversion Tools.

PGS TD_TAIjdtoTDTjed

This function converts TAI Julian dateto TDT Julian ephemeris date.

PGS TD_TAljdtoUTCjd

This function converts TAI Julian date to UTC Julian date.

6-271 333-CD-004-002

PGS TD_TAItoGAST

See descriptionin 6.2.7.7 Time and Date Conversion Tools.

PGS TD_TAltol SOint

This function converts TAI to an integer number that represents an SO time (YYMMDDhh).
PGS TD_TAIltoTAljd

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS TD_TAItoUDTF

Thistool converts TAI to aUDTF integer array.

PGS TD_TAltoUT1jd

Thistool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date.
PGS TD_TAIltoUT 1pole

This tool converts continuous seconds since 12AM UTC 1-1-93 to UT1 time as a Julian date and
returns x and y polar wander values and UT1-UTC as well.

PGS TD_TAltoUTC

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS TD_TAItoUTCjd

Thistool converts continuous seconds since 12AM UTC 1-1-93 to UTC time as a Julian date.
PGS TD_TDBjedtoTDTjed

This function converts TDB (Barycentric Dynamical Time) as a Julian ephemeris date to TDT
(Terrestrial Dynamical Time) as a Julian ephemeris date.

PGS TD_TDTjedtoTAljd
This function converts TDT Julian ephemeris date to TAI Julian date.
PGS TD_TDTjedtoTDBjed

This function converts TDT (Terrestrial Dynamical Time) as a Julian ephemeris date to TDB
(Barycentric Dynamical Time) as a Julian ephemeris date.

PGS TD TJDtoJD
This function converts a truncated Julian date to a Julian date.
PGS TD_TRMMtoTAlI

This function converts TRMM spacecraft clock time in CCSDS Unsegmented Time Code (CUC)
(with implicit P-field) format to TAI (Toolkit internal time).

6-272 333-CD-004-002

PGS TD_TRMMtoUTC

This function converts TRMM spacecraft clock time in CCSDS unsegmented Time Code (CUC)
(with implicit P-field) format to UTC in CCSDS ASCII time code A format.

PGS TD_Timelnterval

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UDTFtoTAl

This function convertsa UDTF integer array to TAI.

PGS TD_UDTFtoUTCjd

This function convertsa UDTF integer array to a UTC Julian date.
PGS TD_UT1jdtoUTCjd

Thistool converts UT1 time as aJulian dateto UTC time as a Julian date.
PGS TD_UTC to SCtime

See descriptionin 6.2.7.7 Time and Date Conversion Tools.
PGS TD _UTCjdtol SOint

This function converts a UTC time in toolkit Julian date format to an integer number that
represents an 1SO time (YY MMDDhh).

PGS TD_UTCjdtoPB5

This function convertsa UTC timein toolkit Julian date format to PB5 time format.
PGS TD_UTCjdtoPB5C

This function convertsa UTC timein toolkit Julian date format to PB5C time format.
PGS TD_UTCjdtoTAljd

Thistool converts UTC as aJulian date to TAI as a Julian date.

PGS TD_UTCjdtoUT1jd

Thistool converts UTC time as a Julian date to UT1 time as a Julian date.

PGS TD_UTCjdtoUTC()

See description in 6.2.7.7 Time and Date Conversion Tools.

PGS TD_UTCtoADEOS!|

This function converts UTC in CCSDS ASCII time code A (or B) format to ADEOS s/c clock
format (thisis a prototype only).

6-273 333-CD-004-002

PGS _TD_UTCtoEOSAM

This function converts UTC in CCSDS ASCII time code A (or B) format to EOS AM spacecraft
(s/c) clock timein CCSDS Day Segmented (CDS) Time Code (with implicit P-field) format.

PGS _TD_UTCtoEOSPM

This function converts UTC in CCSDS ASCII Time Code A or CCSDS ASCII Time Code B
format to EOS PM spacecraft clock time in CCSDS Unsegmented Time Code (CUC) (with
explicit P-field) format.

PGS TD_UTCtoFGDC

This function converts UTC Time in CCSDS ASCII Time Code (format A or B) to the
equivalent FGDC ASCII date string and time string. The time string will bein “Universal Time”
or “local time” format depending on the value of the input variable tdf.

PGS TD_UTCtoGPS

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UTCtoTAl

See descriptionin 6.2.7.7 Time and Date Conversion Tools.
PGS TD _UTCtoTAljd

Thistool converts UTC in CCSDS ASCII timeformat A or B to TAI asa Julian date.
PGS TD_UTCtoTDBjed

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UTCtoTDTjed

See descriptionin 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UTCtoTRMM)/()

This function converts UTC in CCSDS ASCII time code A (or B) format to TRMM spacecraft
(g/c) clock timein CCSDS Unsegmented Time Code (CUC) (with implicit P-field) format.

PGS TD_UTCtoUT1

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UTCtoUT1jd

See description in 6.2.7.7 Time and Date Conversion Tools.
PGS TD_UTCtoUTCjd

See description in 6.2.7.7 Time and Date Conversion Tools.

6-274 333-CD-004-002

PGS TD_calday
This function converts Julian day to calendar day (year, month, day).
PGS TD_gast

This function converts GMST, nutation in longitude and TDB Julian date to Greenwich Apparent
Sidereal Time expressed as the hour angle of the true vernal equinox of date at the Greenwich
meridian (in radians).

PGS TD_gmst

The function converts UT1 expressed as a Julian day to Greenwich Mean Sidereal Time, i.e. the
hour angle of the vernal equinox at the Greenwich meridian (in radians).

PGS TD_julday

This function converts calendar day (year, month, dat) to Julian day.

PGS TD_sortArraylndices

This function sorts an array of PGSt_double (double precision) numbers in ascending order.
PGS _TD_timeCheck

This function accepts a character array (string) as an input and returns a value indicating if the
stringisinavalid CCSDS ASCII format.

6-275 333-CD-004-002

